Experimental Study on the Viscoelastic Flow Mixing in Microfluidics

Author:

Zhang Meng1,Zhang Wu2,Wang Zihuang2,Chen Weiqian2

Affiliation:

1. The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510080, China

2. School of Physics and Material Science, Guangzhou University, Guangzhou 510006 China

Abstract

Abstract Background: The study of blood flow in vessels is always crucial to understand cardiovascular diseases such as arrhythmias, coronary artery disease and deep vein thrombosis. A viscoelastic fluid in a microchannel is modeled for the blood flow study.Methods: In this paper, we modeled the blood flow through a viscoelastic fluid in a microfluidic channel. The flow properties, especially the flow pattern and transient mixing of two fluid streams in a T-shaped microchannel, are experimentally studied.Results: It was found that the viscoelastic fluid has a transiently unstable flow pattern compared to the normal Newtonian fluid, and the mixing is also increased due to its elastic property. Similar to the pulsatile blood flow, the fluid is driven under a periodically pulsed stimulus, and the flow pattern and transient mixing are compared at different flow rates and driving period conditions.Conclusions: The integration of microfluidic technology with the blood flow research could provide a new approach to understand the related disease mechanism, which can also be used to analyze the drug mixing and delivery in the blood flow.

Publisher

Compuscript, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3