T-cell engineering strategies for tumors with low antigen density, and T-cell survival in the immunosuppressive tumor microenvironment of relapsed/refractory diffuse large B-cell lymphoma

Author:

Luan Rong1,Deng Biping1

Affiliation:

1. Cytology Laboratory, Beijing Gobroad Boren Hospital, Jitong East Road No.6, Fengtai district, Beijing 10070, China

Abstract

Refractory and/or relapsed (r/r) diffuse large B-cell lymphomas after treatment with two lines of systemic chemoimmunotherapy exhibit diversity in genetics, tissue biology, and pathology, as well as poor prognosis. Patient TCRαβ cells engineered with a CD19-specific chimeric antigen receptor (CAR) have shown promising clinical outcomes in r/r diffuse large B-cell lymphoma. The ZUMA-1 study, the JULIET study, and the TRANSCEND NHL 001 study of three prototype 19CAR-T cells have indicated an overall response rate of 52–82%, a complete response rate of 40–58%, and a 12-month progression-free survival of 33.2%–46.6%, with clinically manageable treatment related toxicity. At the 5-year follow-up, relapse was observed in approximately 57% of patients within 1 year. Understanding of the risk factors for non-response remains insufficient. In addition to intrinsic tumor resistance, such as aberrant apoptotic signaling, downregulation or loss of tumor-associated antigens (TAA), an immunosuppressive tumor microenvironment, and CAR-T cell exhaustion in vivo have been suggested to be important risk factors. Mechanisms underlying 19CAR-T cell exhaustion under chronic TAA exposure, and limited 19CAR-T cell trafficking and infiltration into the tumor mass have been reported. Moreover, tumor escape in the presence of low TAA density remains a challenge in 1928ζ CAR-T cell treatment. In this review, we provide an overview of modified modular CAR elements and their synergistic effects in controlling T-cell function. We then briefly discuss novel strategies against tumors with low TAA density, such as bispecific tandem or loop CAR recognition domains, the development of human leukocyte antigen-independent synthetic TCRαβ double-chain receptors integrated into the constant region of the TCRα chain, and armored CAR-T cells targeting the tumor microenvironment.

Publisher

Compuscript, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3