The effect of increasing the proportion of the far red region in full-spectrum LED irradiation on the growth and development of sugar beet plants (<i>Beta vulgaris</i> L. ssp. <i>vulgaris var. saccharifera</i> Alef.) in closed agrobiotechnological systems

Author:

Vernik P. A.1ORCID,Zelenkov V. N.2ORCID,Latushkin V. V.1ORCID,Kosobryukhov A. A.3ORCID,Novikov V. B.1ORCID,Putilina L. N.4ORCID,Ivanova M. I.5ORCID,Gavrilov S. V.1ORCID

Affiliation:

1. Independent NPO Institute for Socio-Economic Strategies and Development Technologies (Institute for Development Strategies)

2. All-Russian Research Institute of Vegetable Growing – branch of the Federal State Budgetary Scientific Institution "Federal Scientific Vegetable Center"; All-Russian Scientific Research Institute of Medicinal and Aromatic Plants»

3. Institute of Basic Biological Problems of Russian Academy of Sciences (IBBP RAS)

4. The A.L. Mazlumov All-Russian Research Institute of Sugar Beet and Sugar

5. All-Russian Scientific Research Institute of Medicinal and Aromatic Plants»

Abstract

Relevance and methodology. In order to determine the effect of increasing the proportion of far red light (different ratio of red and far red light) in the total spectrum of polychrome irradiation on the growth rates of sugar beet plants of the Smena hybrid, they were grown for 82 days under LED lighting under controlled climate conditions in a Synergotron digital device of the ISR 2.01 model with a twofold increase in the proportion of far red light compared to control.Results. An increase in the proportion of far red light led to an increase in the specific weight of leaves with a smaller area of leaves in the initial period of plant growth, higher values of the quantum yield of photosynthesis, the rate of electron transport, and a decrease in energy losses mainly to heat. The biometric indicators of plants changed depending on the period of ontogeny. In the initial period, the biomass of the aerial part prevailed, in the subsequent period, the biomass of root crops. In the experimental variant, the accumulation of biomass in the aerial parts of plants in the initial period of the experiment turned out to be less than in the control, and only at the end of the experiment was an excess of the total biomass in the experimental variant by 12.2%. There was an increase in the accumulation of root biomass compared to the control by 38.7%. The predominant part of the aboveground biomass of sugar beet was made up of leaf blades, the proportion of petioles was much less and practically did not depend on the composition of the light. At the end of the growing period, the dry matter content in root crops increased by 2.44% compared to the control, sugar content – by 0.65%. The data obtained can be used in the development of technology for artificial lighting of sugar beets when grown in closed agrobiotechnosystems in order to increase the yield and sugar content of root crops.

Publisher

FSBSI All-Russian Scientfic Research Institute of Vegetable Breeding and Seed Production

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3