Histological, Ultrastructural, and Genetic Investigatory Comparison between Different Types of Experimentally - Induced Antemortem Burns

Author:

El Euony Omnia I1,Wisely Youstina W1,Nazem Ashraf M2,El Okle Osama S1

Affiliation:

1. Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt

2. Department of Food Hygiene, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt

Abstract

Background: Burn is a cutaneous injury that is caused by heat, electricity, chemicals, freezing, and radiation. Aims and Objectives: This study aimed to differentiate between dry heat burn injury and other common cutaneous burn injuries. Materials and Methods: For this, different types of dermal burns were created experimentally in four groups of rats, 5 rats for each, as the following: dry heat burn model, scalding model, chemical burn model, and electrical burn model. The burnt skin and hair samples were subjected to scanning electron microscopic examination, molecular assay of aquaporin-3 (AQP-3) gene expression, and histopathological investigation. Results: There were crakes, holes, and cuticular irregularity in hairs exposed to both dry heat and sulfuric acid (chemical burn), while the major lesion observed in hairs exposed to boiling water (scald injury) was cuticular cell loss. On the other hand, dry burnt skin showed empty orifices of the hair and sebaceous gland with overlapped smooth lamella, while scald induced irregularity of collagen fibers. The sulfuric acid produces separation of the epidermis from the dermis and irregularity in collagen fiber. Rat skin exposed to electric current appears with fissure, lacerated edges, and erected broken hairs. Despite AQP-3 gene expression was significantly upregulated in the burnt skin of all experimental models in comparing with control rats, dry heat burned skin showed the highest upregulated level. In addition, the coagulation of the dermoepidermal cells and vesicles formation were the most pronounced lesions observed in all types of burns, while scald was distinguished by appearance of elongated cellular nuclei. Conclusion: These observations suggest the possibility to differentiate between dry thermal burn, scald injury, chemical burn, and electrical burn using the combination between scanning electron microscopic examination, analysis of cutaneous AQP-3 gene expression, and histological investigation.

Publisher

Medknow

Reference21 articles.

1. Thermal injuries in veterinary forensic pathology;Wohlsein;Vet Pathol,2016

2. Current experimental models of burns;Qu;Discov Med,2017

3. Forensic diagnosis of ante- and postmortem burn based on aquaporin-3 gene expression in the skin;Kubo;Leg Med (Tokyo),2014

4. Effects of metformin on burn-induced hepatic endoplasmic reticulum stress in male rats;Hiyama;Mol Med,2013

5. Defining exposure time using burn severity of skin tissue under the scanning electron microscope;Ringrose;J Emerg Forensic Sci Res,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3