TSPYL5 inhibits the tumorigenesis of colorectal cancer cells in vivo by triggering DNA damage

Author:

Huang Chao1,Ruan Peng1,He Chunping1,Zhou Rui1

Affiliation:

1. Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China

Abstract

ABSTRACT Context: Testis-specific protein Y-encoded-like 5 (TSPYL5) suppresses several cancers in vivo, including colorectal cancer (CRC); however, its mechanism and role in CRC cell tumorigenesis in vivo remain unknown. Aims: To elucidate the molecular mechanisms of colorectal cancer and find new therapeutic targets to improve CRC patient outcomes. Settings and Design: Male mice (4 weeks old, 16–22 g) were housed in sterile cages in a temperature-controlled room (20–25°C) with a 12 h light/dark cycle and ad libitum food and water. Methods and Materials: TSPYL5 overexpressing or non-overexpressing HCT116 cells were used to create a nude mouse tumor model. Tumor tissue was evaluated histologically after hematoxylin and eosin (H and E) staining. TUNEL staining assessed tumor cell apoptosis. Ki67 expression in excised tumor tissue was measured by immunohistochemistry. Western blotting examined double-stranded break (DBS)-associated protein expression in vivo. Statistical Analysis Used: IBM SPSS Statistics for Windows, Version 21.0 was used for all analyses (IBM Corp., Armonk, NY, USA). At least three independent experiments yield a mean value ± standard deviation. Unpaired Student’s t-tests compared groups. One-way analysis of variance and Dunnett’s test were used to compare groups with a P value < 0.5. Results: TSPYL5 overexpression inhibited CRC cell tumorigenicity and damaged tumor cells in vivo. TSPYL5 overexpression also significantly increased Bax and p-H2AX (early double-stranded break indicators) and decreased Ki67, Bcl-2, and peroxisome proliferator-activated receptor expression. Conclusions: Collectively, TSPYL5 overexpression inhibited the tumorigenicity of CRC cells in vivo by inducing DNA damage.

Publisher

Medknow

Subject

Radiology, Nuclear Medicine and imaging,Oncology,General Medicine

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3