Decoding the significant diagnostic and prognostic importance of maternal embryonic leucine zipper kinase in human cancers through deep integrative analyses

Author:

Hameed Yasir1

Affiliation:

1. Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan

Abstract

ABSTRACT Background: Cancer is a multifactorial disease and the second leading cause of human deaths worldwide. So far, the underlying mechanisms of cancer have not been yet fully elucidated. Methods: By using TCGA expression data, we determine the pathogenic roles of the maternal embryonic leucine zipper kinase (MELK) gene in various human cancers in this study. For this purpose, different online databases and tools (UALCAN, Kaplan–Meier (KM) plotter, TNMplot, GENT2, GEPIA, HPA, cBioPortal, STRING, Enrichr, TIMER, Cytoscape, DAVID, MuTarget, and CTD) were used. Results: MELK gene expression was analyzed in a total of 24 human cancers and was found notably up-regulated in all the 24 analyzed tumor tissues relative to controls. Moreover, across a few specific cancers, including kidney renal clear cell carcinoma (KIRC), stomach adenocarcinoma (STAD), lung adenocarcinoma (LUAD), and liver hepatocellular carcinoma (LIHC) patients, MELK up-regulation was observed to be correlated with the shorter survival duration and metastasis. This valuable information highlighted that MELK plays a significant role in the development and progression of these four cancers. Based on clinical variables, MELK higher expression was also found in KIRC, STAD, LUAD, and LIHC patients with different clinical variables. Gene ontology and pathway analysis outcomes showed that MELK-associated genes notably co-expressed with MELK and belongs to a variety of diverse biological processes, molecular functions, and pathways. MELK expression was also correlated with promoter methylation levels, genetic alterations, other mutant genes, tumor purity, CD8+ T, and CD+4 T immune cells infiltrations in KIRC, STAD, LUAD, and LIHC. Conclusion: This pan-cancer study revealed the diagnostic and prognostic roles of MELK across four different cancers.

Publisher

Medknow

Subject

Radiology, Nuclear Medicine and imaging,Oncology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3