The Dynamic(s) of Adipose Stem Cell System, Their Survival, and Cessation under the Influence of Electromagnetic Fields

Author:

Trzyna Anna,Bądziul Dorota B.,Jakubczyk Paweł,Bocak Damian S.,Cholewa Marian,Banaś-Ząbczyk Agnieszka

Abstract

Context The electromagnetic field (EMF) is one of the external biophysical factors that can influence stem cells' structure and functionality. Depending on its frequency and magnetic flux density, EMF can have both a positive and negative effect on stem cell biology. Aims: The aim of the study is to define EMF conditions that support beneficial physiological processes and those that lead to pathophysiological phenomena. Understanding the changes and processes occurring in stem cells after exposure to EMFs of different parameters can be an important factor to be applied in stem cell-based therapies and regenerative medicine. Materials and Methods: In this study, using fluorescent microscopy and flow cytometry methods, the influence of EMF on adipose-derived stem cells proliferation, cell cycle, viability, and death were examined. EMF parameters were set in accordance with the ion cyclotron resonance (ICR) theory that influences Ca2+ and Mg2+ ions influx. Results were statistically developed using the ANOVA and effect size (Cohen's d) analyses. Results In this study, the continuous exposure of adipose-derived stem cells to EMF (ICR parameters: 76.6 Hz; 20 μT) causes a statistically significant increase in cell death through the enhancement of apoptotic, necrotic, and autophagic cell numbers. Apart from increased cell deaths after EMF exposure, increased proliferation after 24 h of EMF exposure has been also observed. Conclusions Results presented in this study show that EMF influences stem cell dynamics resulting in a significantly increased cell death, thus altering the stem cell fate. It is important to further establish EMF conditions that support ASCs functioning and beneficial physiological processes for future regenerative medical purposes.

Publisher

Medknow

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3