Author:
Negi Pradeep Singh,Mehta Shashi Bhushan,Jena Amarnath
Abstract
Background:
Native T1 relaxation time (T10) presents an important prerequisite to reliably quantify pharmacokinetic parameter like Ktrans (volume transfer constant). Native T1 value can be varied because of the inhomogeneity in the breast coil, thus influencing the Ktrans measurement.
Purpose:
The current study aims to design and use a phantom with multiple tubes for both breast cuffs to assess native T1 inhomogeneity across the dedicated molecular magnetic resonance (mMR) breast coil and adopt corrective method to spatially normalize T1 values to improve homogeneity.
Materials and Methods:
Two phantoms with multiple tubes (19 tubes) specially designed and filled with contrast medium with known T1 value were placed in each mMR breast coil cuff. Native T1 at various spatial locations was calculated applying dual flip angle sequence. Correction factors were derived at various spatial locations as a function of deviation of the native T1 value from phantom and applied to correct the native T1 relaxation time.
Results:
A statistically significant difference between native T1 values of the right and left anterior (P = 0.0095), middle (P = 0.0081), and posterior (P = 0.0004) parts of the breast coil. No significant difference was seen in the corrected T1 values between anterior (P = 0.402), middle (P = 0.305), and posterior (P = 0.349) aspects of both sides of the breast coil.
Conclusion:
Inhomogeneity in the native T1 value exists in dedicated mMR breast coil, and significant improvement can be achieved using specially designed external phantom with multiple tubes.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献