Breast Cancer Subtype Prediction Model Employing Artificial Neural Network and 18F-Fluorodeoxyglucose Positron Emission Tomography/ Computed Tomography

Author:

Hossain Alamgir1,Chowdhury Shariful Islam2

Affiliation:

1. Department of Physics, University of Rajshahi, Rajshahi-6205, Rajshahi, Bangladesh

2. Institute of Nuclear Medicine and Allied Sciences, Bangladesh Atomic Energy Commission, Rajshahi, Bangladesh

Abstract

Introduction: Although positron emission tomography/computed tomography (PET/CT) is a common tool for measuring breast cancer (BC), subtypes are not automatically classified by it. Therefore, the purpose of this research is to use an artificial neural network (ANN) to evaluate the clinical subtypes of BC based on the value of the tumor marker. Materials and Methods: In our nuclear medical facility, 122 BC patients (training and testing) had 18F-fluoro-D-glucose (18F-FDG) PET/CT to identify the various subtypes of the disease. 18F-FDG-18 injections were administered to the patients before the scanning process. We carried out the scan according to protocol. Based on the tumor marker value, the ANN’s output layer uses the Softmax function with cross-entropy loss to detect different subtypes of BC. Results: With an accuracy of 95.77%, the result illustrates the ANN model for K-fold cross-validation. The mean values of specificity and sensitivity were 0.955 and 0.958, respectively. The area under the curve on average was 0.985. Conclusion: Subtypes of BC may be categorized using the suggested approach. The PET/CT may be updated to diagnose BC subtypes using the appropriate tumor maker value when the suggested model is clinically implemented.

Publisher

Medknow

Reference56 articles.

1. Breast cancer statistics, 2011;DeSantis;CA Cancer J Clin,2011

2. Male breast cancer:A disease distinct from female breast cancer;Gucalp;Breast Cancer Res Treat,2019

3. Breast cancer in young women;Radecka;Ginekol Pol,2016

4. Biology of breast cancer in young women;Azim;Breast Cancer Res,2014

5. Primary and secondary prevention of breast cancer;Kolak;Ann Agric Environ Med,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3