Laser Fragmentation of Green Tea-synthesized Silver Nanoparticles and Their Blood Toxicity: Effect of Laser Wavelength on Particle Diameters

Author:

Alattar Ashraf M.1,Al-Sharuee Israa F.2,Odah Jafer Fahdel1

Affiliation:

1. Department of Medical Physics, College of Science, Al-Karkh University of Science, Baghdad, Iraq

2. Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq

Abstract

Background: The efficacy of fractionation is significantly impacted by the colloidal particles’ spontaneous absorption of laser beam radiation. The classification of silver nanoparticles during fragmentation processing is regulated through the collection of a combination of laser pulses with wavelengths of 1064 nm and 532 nm. Aims and Objectives: This study presents an investigation of the efficacy of a plant extract in conjunction with the incorporation of supplementary silver nanoparticles, as well as the generation of smaller-sized silver nanoparticles using laser fragmentation.and then measure thier toxity on the blood. Results: Ag nanoparticles were synthesized using pulsed laser fragmentation on green tea AgNPs. The synthesis process involved the utilization of a Q-switch Nd:YAG laser with wavelengths of 1064 nm and 532 nm, with energy ranging from 200 to 1000 mJ. Initially, a silver nano colloid was synthesized through the process of fragmented of the Ag target using the second harmonic generation of 532 nm at various energy levels. The optimal energy within the selected wavelengths was determined in order to facilitate the ultimate comparison. Transmission electron microscopy (TEM) was used to determine surface morphology and average particle size, while a spectrophotometer was used to analyses UV light’s spectrum characteristics. The measurements focused on the surface plasmon resonance (SPR) phenomenon. The absorption spectra of silver nanoparticles exhibit distinct and prominent peaks at wavelengths of 405 nm and 415 nm. The mean diameter of the silver nanoparticles was found to be 16 nm and 20 nm, corresponding to wavelengths of 1064 nm and 532 nm, respectively. Conclusion: As a consequence, there is a decrease in the range of particle sizes and a decrease in the mean size to lower magnitudes, resulting in a very stable colloid. This particular methodology has demonstrated considerable efficacy in the production of colloidal suspensions with the intended particle dimensions. Moreover, by the analysis of nanoparticles in human blood, no discernible alterations in the blood constituents were seen, indicating their non-toxic nature.

Publisher

Medknow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3