Development, Construction, and Evaluation of an Alternative Dosimetry Phantom for Computed Tomography

Author:

Lubis Lukmanda Evan123,Najmah Windi Dliya1,Muliyanti Yuni1,Hariyati Ika3,Ryangga Dea4,Mart Terry1,Bosmans Hilde5,Soejoko Djarwani Soeharso1

Affiliation:

1. Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Indonesia

2. Center for Medical Physics and Biophysics, Faculty of Mathematics and Natural Sciences, Institute for Applied Sciences, Universitas Indonesia, Indonesia

3. Radiology Unit, Universitas Indonesia Hospital, Depok, Indonesia

4. Department of Radiotherapy, Pasar Minggu Regional General Hospital, South Jakarta, Indonesia

5. Department of Imaging and Pathology, Medical Physics and Quality Assessment, Catholic University of Leuven, Leuven, Belgium

Abstract

This article aims to present the development, construction, and evaluation of an alternative computed tomography dose index (CTDI) phantom. Epoxy resin was mixed with an iodine-based contrast agent to produce radiological characteristics resembling polymethyl methacrylate (PMMA) as a standard CTDI phantom. As a preliminary study, testing was carried out using computed tomography images (80 and 120 kVp) on 12 variations of epoxy-iodine resin mixtures to obtain relative electron density (ρe ) values and effective atomic numbers (Zeff ) of the samples. The alternative CTDI phantoms were then constructed with a resin-iodine mixture using iodine concentrations that yield on closest ρe and Zeff values to those of PMMA. The evaluation was carried out by comparing dose measurement results at various energies between the alternative phantom and the International Electrotechnical Commission-standard CTDI phantom. At a concentration of 0.46%, the epoxy resin has ρe and Zeff with a deviation against PMMA of 0.12% and 1.58%, respectively, so that composition was chosen for the alternative CTDI phantom construction. The average dose discrepancy values were 5% and 1%, respectively, for the head and body phantoms in the tested tube voltages of 80 kVp, 100 kVp, 120 kVp, and 135 kVp. The Student’s t-test result between the alternative and the standard phantoms also showed P < 0.05, indicating the comparability of the alternative CTDI phantom with the standard CTDI phantom.

Publisher

Medknow

Subject

Radiology, Nuclear Medicine and imaging,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3