Machine learning approach to assess the association between anthropometric, metabolic, and nutritional status and semen parameters

Author:

Bachelot Guillaume123,Lamaziere Antonin13,Czernichow Sebastien4,Faure Celine2,Racine Chrystelle1,Levy Rachel12,Dupont Charlotte12,

Affiliation:

1. Sorbonne University School of Medicine, Saint-Antoine Research Center, INSERM UMR 938, 27 rue Chaligny, Paris 75012, France

2. Reproductive Biology Department-CECOS, Tenon Hospital, AP-HP.Sorbonne University, Paris 75020, France

3. Clinical Metabolomics Department, Saint-Antoine Hospital, AP-HP, 27 rue Chaligny, Paris 75012, France

4. Nutrition Department, Obesity Specialist Centre, Georges Pompidou European Hospital, AP-HP, Paris 75015, France

Abstract

Many lifestyle factors, such as nutritional imbalance leading to obesity, metabolic disorders, and nutritional deficiency, have been identified as potential risk factors for male infertility. The aim of this study was to evaluate the relationship between semen parameters and anthropometric, metabolic and nutritional parameters. Relationship was first assessed individually, then after the application of a previously constructed and validated machine learning score that allows their combination. Anthropometric, metabolic, antioxidant, micronutrient, and sperm parameters from 75 men suffering from idiopathic infertility from four infertility centers in France (Jean-Verdier ART Center Hospital, Bondy; North Hospital ART Center, Saint-Étienne; Navarre Polyclinic ART Center, Pau; and Cochin Hospital ART Center, Paris) between September 2009 and December 2013 were collected. After assessing standard correlation analysis, a previously built machine learning model, providing a score ranging from 0 (the poorest) to 1 (the most favorable), was calculated for each man in the study cohort. This machine learning model, which separates infertile/fertile men with unexplained infertility on the basis of their bioclinical signature, provides a more holistic evaluation of the influence of the considered markers (anthropometric, metabolic, and oxidative status). We observed a significant correlation of some anthropometric, metabolic, and nutritional disorders with some sperm characteristics. Moreover, an unfavorable machine learning score was associated with a high level of sperm DNA fragmentation. Favorable anthropometric, metabolic, and oxidative patterns, which may reflect an appropriate lifestyle, appear to positively impact overall health, in particular reproductive function. This study, consistent with previous publications, suggests that beyond semen quality parameters, in an essential assessment of male fertility, other key factors should be taken into account. In this regard, the application of emerging artificial intelligence techniques may provide a unique opportunity to integrate all these parameters and deliver personalized care.

Publisher

Medknow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3