Prediction equations for detecting COVID-19 infection using basic laboratory parameters

Author:

Dasgupta Shirin1,Das Shuvankar2,Chakraborty Debarghya2

Affiliation:

1. Dr. B. C. Roy Multi Speciality Medical Research Centre, Indian Institute of Technology Kharagpur, West Bengal, India

2. Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, India

Abstract

ABSTRACT Objectives: Coronavirus disease 2019 (COVID-19) emerged as a global pandemic during 2019 to 2022. The gold standard method of detecting this disease is reverse transcription-polymerase chain reaction (RT-PCR). However, RT-PCR has a number of shortcomings. Hence, the objective is to propose a cheap and effective method of detecting COVID-19 infection by using machine learning (ML) techniques, which encompasses five basic parameters as an alternative to the costly RT-PCR. Materials and Methods: Two machine learning-based predictive models, namely, Artificial Neural Network (ANN) and Multivariate Adaptive Regression Splines (MARS), are designed for predicting COVID-19 infection as a cheaper and simpler alternative to RT-PCR utilizing five basic parameters [i.e., age, total leucocyte count, red blood cell count, platelet count, C-reactive protein (CRP)]. Each of these parameters was studied, and correlation is drawn with COVID-19 diagnosis and progression. These laboratory parameters were evaluated in 171 patients who presented with symptoms suspicious of COVID-19 in a hospital at Kharagpur, India, from April to August 2022. Out of a total of 171 patients, 88 and 83 were found to be COVID-19-negative and COVID-19-positive, respectively. Results: The accuracies of the predicted class are found to be 97.06% and 91.18% for ANN and MARS, respectively. CRP is found to be the most significant input parameter. Finally, two predictive mathematical equations for each ML model are provided, which can be quite useful to detect the COVID-19 infection easily. Conclusion: It is expected that the present study will be useful to the medical practitioners for predicting the COVID-19 infection in patients based on only five very basic parameters.

Publisher

Medknow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3