Entomological assessment in ‘hotspots’ of four lymphatic filariasis endemic districts, Central Nepal during post-MDA surveillance

Author:

Mehta Pramod Kumar1,Maharjan Mahendra1

Affiliation:

1. Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Nepal

Abstract

Background & objectives: Annual mass drug administration (MDA) is the main strategy to interrupt the transmission of lymphatic filariasis (LF) in the community. The main aim of monitoring the MDA program, for its effectiveness and interruption of LF is the post-MDA surveillance using antigen survey in children born after MDA. The latest technique of new research suggests that xenomonitoring is an effective tool for monitoring LF intervention. The objective of this study was to assess the W. bancrofti infection/or infectivity in vector mosquitoes by xenomonitoring during post-MDA surveillance. Methods: A descriptive cross-sectional study was conducted in the hotspots of selected four districts of Central Nepal. A gravid trap technique was used for sampling mosquitoes. Infection/or infectivity was determined via the dissection of vector mosquitoes. Anopheles, Aedes, Armigerus and Culex species were collected from hotspots of four endemic districts, two from the hilly region (Lalitpur and Dhading) and two from Terai region (Bara and Mahottari) of Central Nepal. Results: A total of 4450 mosquitoes belonging to four genera, Anopheles, Culex, Armigeres, and Aedes were collected from four hotspots. The distribution of Culex quinquefasciatus was found to be the highest, 88.9% (n=3955/4450) followed by Cx. vishnui (4.5%), Armigeres sp (5.8%), An. culicifascies (0.2%), Aedes spp (0.8%). The proportion of female mosquitoes trapped is significantly higher. A total of 3344 parous Cx. quinquefasciatus mosquitoes were dissected for any larval stage of W. bancrofti. We could not find any filarial infection in dissected mosquito samples. Interpretation & conclusion: We conclude that the gravid trap is an efficient tool for the collection of gravid Cx. quinquefasciatus mosquitoes for xenomonitoring studies of filariasis endemic regions. Vector composition indicated a maximum number of vector mosquitoes of lymphatic filariasis were trapped compared with the other three species. Distribution and density of Cx. quinquefasciatus was found highest in four hotspots of endemic districts. None of the Cx. quinquefasciatus dissected were found to be infected by larval forms of filaria. Since the low levels of infection persistence in the human population in these hot spots, vector infection and infectivity can’t be ignored. Microscopic xenomonitoring at a low level of infection persistent is less likely to be efficient so molecular xenomonitoring along with a large sample should be required in each of the hot spots of the districts. Additionally, area is receptive so further vector control intervention should be required to reduce the risk of resurgence of infection.

Publisher

Medknow

Reference19 articles.

1. Eliminating lymphatic filariasis: a view from the field;Streit;Annals of the New York Academy of Sciences,2008

2. Global Programme to Eliminate Lymphatic Filariasis: Weakly progress report,2016

3. Global, regional, and national disability- adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition;Murray;The Lancet,2015

4. Progress and impact of 13 years of the global program to eliminate lymphatic filariasis on reducing the burden of filarial disease;Ramaiah;PLoS Neglected Tropical Diseases,2014

5. Meeting of the International Task Force for Disease Eradication, November 2015;World;Weekly Epidemiological Record,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3