Random Tree Algorithm to Analyse the Relation between Type of Traumatic Dental Injuries and Its Demographic and Predisposing Factors - A Cross-Sectional Study

Author:

Khan Mohammad Kamran1,Jindal Mahendra Kumar1

Affiliation:

1. Department of Pediatric and Preventive Dentistry, Faculty of Medicine, Aligarh Muslim University (AMU), Aligarh, Uttar Pradesh, India

Abstract

Background and Aim: Traumatic dental injuries (TDIs) have become the public dental health problem worldwide in children and adolescents. These injuries are complex and multifactorial in aetiology. This study was done with the aim to analyse the association of 'type of TDI' with its demographic and various predisposing factors in children by an advanced statistical method of machine learning (ML) of artificial intelligence (AI). Materials and Methods: The present study's data were gathered by conducting the observational cross-sectional study among index age-groups 12 and 15 years children of randomly selected schools of different geographical regions. Structured interviews and dental examinations performed were done to record the variables of TDIs in self-constructed proforma. The gathered data were analysed by employing the random-tree model of machine learning algorithm of IBM SPSS Modeler version-18 software. Results: Molar-relationship (2.5), age (1.75), sex (1.5) and geographical region/area (~1.5) were the most important predictors (factors) for the determination of type of dental injury as shown by the random tree model, whereas clinical factors like overjet (0.75), lip-competence (0.5) and overbite (0.5) showed lesser importance in the determination of type of TDIs. Conclusion: Demographic factors (age, sex and geographical region) and one clinical factor (molar-relation) were found as the stronger factors for determining the type of traumatic dental injury in children.

Publisher

Medknow

Reference18 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Use of ChatGPT in dental traumatology;Australian Endodontic Journal;2024-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3