Arctiin Protects Chondrocytes From Interleukin-1β-Induced Inflammation and Apoptosis by RNA Sequence In vivo and In vitro

Author:

Song Yong-Jia1,Bao Jia-Min2,Zhang Zeng-Qiao3,Hai Yun-Xiang1,Wen Hao-Nan1,Zhai Tian-Jun2,Feng Wei2,Song Min1

Affiliation:

1. Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China

2. School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China

3. Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China

Abstract

Abstract Objective: Osteoarthritis (OA) is a progressive joint disease characterized by degeneration and destruction of articular cartilage. Arctiin (ARC) has been shown in many studies to have potential anti-inflammatory, anti-apoptotic, and antioxidant effects in various diseases. However, the mechanism by which ARC exerts its protective effects in OA is not fully understood. Here, we explore the mechanism by which ARC plays its protective role in OA. Materials and Methods: Mouse chondrocytes were isolated and characterized through toluidine blue staining and collagen II immunofluorescence labeling. A mouse-based experimental model was developed to induce chondrocyte inflammation through Interleukin-1β (IL-1β). Subsequently, ARC was administered in various doses to mitigate this inflammation. Techniques such as biochemical assays, Enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and immunofluorescence labeling were employed to detect changes in nitric oxide (NO), lactate dehydrogenase (LDH), inflammatory markers, and components of the cartilage matrix in chondrocytes. RNA-sequencing (RNA-seq) was utilized to explore variations in gene expression among chondrocytes across different groups. The genes and signaling pathways that were identified underwent analysis through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment studies. Validation of gene and protein expression was carried out using qRT-PCR, Western blotting, and cellular flow cytometry, based on the results from sequencing. Furthermore, Safranin-O fast green staining and immunohistochemistry staining were performed on slices of the mice knee joint to evaluate the OA Research Society International score, alterations in the cartilage matrix, and levels of apoptosis-related proteins at sites of knee cartilage damage in an arthritis model induced by monosodium iodoacetate (MIA) and physical activity. Results: It was found that ARC effectively inhibits the production of IL-1β-induced chondrocytes’ inducible NO synthase, cyclooxygenase-2, NO, LDH, IL-6, and tumor necrosis factor-α. ARC exhibited a dose-dependent effect on chondrocytes by reducing IL-1β-induced matrix metalloproteinase-3 (MMP-3) and a disintegrin and metalloproteinase with thrombospondin motifs-5 levels while increasing Aggrecan levels. RNA-seq and bioinformatics analysis revealed that ARC’s therapeutic effects involve apoptotic signaling pathways through the downregulation of Bcl-2-associated X protein (Bax) and caspase-3 expression and the upregulation of B-cell lymphoma-2 (Bcl-2) expression in IL-1β-induced chondrocytes. ARC significantly raised the levels of aggrecan and Bcl-2 and decreased the levels of MMP-3, Bax, and caspase-3 in an arthritis model induced by MIA and movement. Conclusions: Through RNA-seq, in vitro cell assays, and in vivo experiments, this research established the link between apoptosis and inflammation in the progression of OA and confirmed the protective effects of ARC on chondrocytes and its key targets. This highlights ARC’s therapeutic potential and its role in the development of treatments for OA.

Publisher

Medknow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3