Tackling Immunotherapy Resistance: Developing Rational Combinations of Immunotherapy and Targeted Drugs

Author:

Cojocaru Elena1,Scaranti Mariana1,Minchom Anna1

Affiliation:

1. The Drug Development Unit, The Royal Marsden Hospital/Institute of Cancer Research, London, UK

Abstract

Abstract Mechanisms of resistance to immunotherapies are multiple and complex with components intrinsic to the tumor cell and within the immune microenvironment. We review evidence of the interaction of tumor cell signaling pathways with immune pathways and the role this plays in de novo and acquired resistance. The mitogen-activated protein kinase (MAPK) pathway activation and effects on T-cell function are discussed. Phosphoinositide 3-kinase (PI3K) pathway activation (including PTEN loss of function) correlates with T-cell inhibition and immunotherapy resistance. Wnt signaling has been implicated in T-cell function suppression. Key evidence from preclinical models exists for the role of these signaling pathways and is described. Clinical evidence is less advanced though correlation of mutations in key nodes with immune resistance provides a limited clinical correlation. Serial biomarker analysis in patients receiving targeted drugs has been attempted with notable examples including BRAF inhibition in melanoma patients resulting in dynamic changes in programmed death-ligand 1 (PD-L1) expression and tumor-infiltrating lymphocytes. Drug combinations aim to overcome mechanisms of resistance, and recent years have seen numerous combinations of targeted therapies and immune checkpoint inhibitors proposed. However, clear biological rationale and thoughtful trial designs with a translational focus are required to allow such combinations to achieve their full potential.

Publisher

Innovative Healthcare Institute

Subject

Cancer Research,Oncology,Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Moonshot for Precision Medicine;Journal of Immunotherapy and Precision Oncology;2019-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3