Left Ventricular Strain in Heart Failure with Preserved Ejection Fraction

Author:

Shukla Madhu1,Mohan Jagdish Chander1

Affiliation:

1. Department of Cardiology, Institute of Heart and Vascular Diseases, Jaipur Golden Hospital, New Delhi, India

Abstract

Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous clinical syndrome of effort intolerance based on structural and functional abnormalities of the cardiovascular system (CVS). Its prevalence is increasing progressively in comparison to that of heart failure with reduced ejection fraction due to aging, obesity, metabolic stress, and hypertension. Multiple domains of the CVS and peripheral organs have reduced reserve capacity and increased stiffness in patients with HFpEF. This high-gain CVS exhibits increased filling pressures and reduced filling volumes under stress despite the left ventricular ejection fraction, commonly estimated parameter of contractile performance, being normal, i.e., >50%. The cost of increasing cardiac output in terms of left ventricular filling pressures is increased and their relationship shows an upward and more left-directed slope due to reduced ventricular and arterial compliance. At the tissue level, there is myocytic hypertrophy and increased extracellular matrix with capillary rarefaction. There are many phenogroups of HFpEF based on the heart’s ability to secrete natriuretic peptides, degree of dysmetabolism, age, renal function, body fat, rhythm, underlying etiology, and subclinical systolic dysfunction. The left ventricle may be pressure-loaded, volume-loaded, or have equipoise with regard to remodeling. Myocardial performance estimated by parameters other than those based on distance or volume displacement may be abnormal in more than half of the patients underlying the presence of subtle systolic dysfunction. This review looks at myocardial performance and characteristics in HFpEF by deformation imaging using acoustic speckle tracking and its diagnostic and prognostic significance. Research points toward the utility of global longitudinal strain in early detection, biological characterization, and risk stratification of HFpEF. Echocardiographic speckle-tracking-based longitudinal strain analysis represents a method of relatively high value and for sensitive phenotyping of HFpEF which is yet to be utilized optimally. Other dimensions of strain, although extensively studied in HFpEF, do not add much value. The focus is on systolic deformation since there is limited utility of diastolic strain and its rate.

Publisher

Medknow

Subject

General Medicine

Reference27 articles.

1. Universal definition and classification of heart failure:A report of the heart failure society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and writing committee of the Universal definition of heart failure;Bozkurt;J Card Fail,2021

2. The pathophysiology of heart failure with preserved ejection fraction;Borlaug;Nat Rev Cardiol,2014

3. The role of systolic-diastolic coupling in distinguishing impaired diastolic recoil in healthy aging and heart failure with preserved ejection fraction;MacNamara;Echocardiography,2021

4. Contractility and ventricular systolic stiffening in hypertensive heart disease insights into the pathogenesis of heart failure with preserved ejection fraction;Borlaug;J Am Coll Cardiol,2009

5. Characterization of static and dynamic left ventricular diastolic function in patients with heart failure with a preserved ejection fraction;Prasad;Circ Heart Fail,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3