Statistical Models for Estimating Linear Growth Velocity

Author:

Chilyabanyama Obvious N.,Chilengi Roma,Ngaruye Innocent,Iqbal Najeeha Talat,Bosomprah Samuel

Abstract

Poor linear growth among infants is still a global public health issue. Linear growth velocity has been variously suggested as a more robust measure for growth over the classical measure of attained height for age. In this study, we systematically reviewed available literature for models used in estimating linear growth velocity. We searched Medline, Embase, Cochrane methodology register, Joanna Briggs Institute EBP, through the Ovid interface, and PubMed database to identify relevant articles that used statistical models to estimate linear growth velocity among infants. Longitudinal studies published in English were included. Two reviewers independently screened the titles and abstracts to identify potentially eligible studies. Any disagreements were discussed and resolved. Full-text articles were downloaded for all the studies that met the eligibility criteria. We synthesized literature using the preferred reporting items for systematic review and meta-analyses guidelines for the most used statistical methods for modelling infant growth trajectories. A total of 301 articles were retrieved from the initial search. Fifty-six full-text articles were assessed for eligibility and 16 of which were included in the final review with a total of 303,940 infants, median sample size of 732 (interquartile range: 241–1683). Polynomial function models were the most used growth model. Three (18.8%) of the articles modelled the linear growth. Two (12.5%) articles used mixed-effects models and another two (12.5%) used the Jenss-Bayley growth models to model linear growth. Other models included residual growth model, two-stage multilevel linear spline model, joint multilevel linear spline model, and generalized least squares with random effects. We have identified linear mixed-effects models, polynomial growth models, and the Jenss-Bayley model as the used models for characterizing linear growth among infants. Linear mixed-effects model is appealing for its robustness even under violation of largely robust even to quite severe violations of model assumptions.

Publisher

Medknow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3