Three-dimensional-printed scaffolds for periodontal regeneration: A systematic review

Author:

Figueiredo Tarsila De Moura1,Do Amaral Guilherme Castro Lima Silva1,Bezerra Gabriela Neiva1,Nakao Lais Yumi Souza1,Villar Cristina Cunha1

Affiliation:

1. Department of Periodontics, School of Dentistry, University of São Paulo, São Paulo, Brazil

Abstract

Background: As current ethical codes preclude determining whether the clinical improvements obtained with the use of three-dimensional (3D)-printed scaffolds represent true periodontal regeneration, the histological proof of evidence for regeneration must be demonstrated in animal models. Thus, this systematic review investigated the regenerative potential of 3D-printed scaffolds in animal models of periodontal defects. Materials and Methods: A systematic search was performed in four databases (Medline, Embase, Web of Science, and Scopus) to identify preclinical controlled studies that investigated the use of 3D-printed scaffolds for periodontal regeneration. Studies limited to periodontal defects treated with 3D scaffolds were eligible for inclusion. The primary outcome was periodontal regeneration, assessed histologically as new bone, cementum, and periodontal ligament (PDL). This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Quality was assessed according to the SRYCLE score. Results: Six studies met the inclusion criteria. Scaffolds were designed using computer-aided design software. While the absence of a scaffold resulted in defects repaired mainly with fibrous connective tissue, the use of nonguiding 3D scaffolds promoted some bone formation. Notably, the regeneration of cementum and functional PDL fibers perpendicularly inserted into the root surface and the alveolar bone was limited to the defects treated with multi-compartment fiber-guiding or ion-containing 3D scaffolds. Nevertheless, the quality of the evidence was limited due to the unclear risk of bias. Conclusions: Despite the limitations of the available evidence, the current data suggest that the use of printed multi-compartment fiber-guiding or ion-containing 3D scaffolds improves periodontal regeneration in animal models.

Publisher

Medknow

Subject

Periodontics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3