ZWINT Promotes the Proliferation, Migration, and Invasion of Cervical Cancer Cells by Regulating the p53/p21 Signaling Pathway

Author:

Ma Zhe1,Cai Yufei1,Tian Chenchen1

Affiliation:

1. Department of Gynaecology and Obstetrics, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China

Abstract

Cervical cancer leads to 300,000 deaths annually and the mechanism of cervical carcinogenesis remains unclear. Zeste White 10-interacting kinetochore protein (ZWINT) is uniquely elevated in malignancies, promoting proliferation, migration, and colony formation of cancer cells. To investigate the role of ZWINT in proliferation, migration, invasion of cervical cancer, and evaluate the potential ability of ZWINT as a therapeutic target. First, ZWINT expression in cervical cancer was analyzed using the bioinformatic methods and assessed in several cervical cancer cell lines. The cell viability and colony formation assays were used to evaluate cell proliferation. Then, transwell assay was performed to investigate cell migration and invasion. Moreover, western blot was used to measure the expression level of ZWINT, matrix metalloproteinase 9 (MMP-9), N-cadherin, E-cadherin, p53 and p21 in CaSki and HeLa cells with ZWINT overexpression or knockdown. The bioinformatic analysis and western blot assay revealed the expression of ZWINT was significantly increased in cervical cancer. The cell viability and colony formation analysis illustrated that cell proliferation could be promoted by ZWINT overexpression and suppressed by ZWINT knockdown. Moreover, ZWINT promoted migration and invasion of CaSki and HeLa cells, through regulating the expression of MMP-9, N-cadherin, and E-cadherin. Furthermore, ZWINT attenuated the expression of p53 and p21 in cervical cancer cells. In summary, ZWINT functions in promoting cell proliferation, migration, and invasion of cervical cancer cells by suppressing p53/p21 signaling pathway, which indicated ZWINT is a potential therapeutic target for cervical cancer treatment.

Publisher

Medknow

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3