Irbesartan Eases Lipopolysaccharide-Induced Lung Injury In Vitro and In Vivo

Author:

Zhang Zhongyuan1,Wang Wei2

Affiliation:

1. Department of Pharmacy, Wuhan Red Cross Hospital, Wuhan, Hubei, China

2. Department of Pharmacy, Yantai Yuhuangding Hospital, Yantai, Shandong, China

Abstract

Acute lung injury (ALI) is classified as a devastating pulmonary disorder contributing to significant incidence and fatality rate. Irbesartan (IRB) is an angiotensin II receptor blocker that has been proposed to protect against oleic acid-induced ALI. To this end, the current study is concentrated on ascertaining the role of IRB in ALI and figuring out the probable action mechanism. First, cell counting kit-8 (CCK-8) appraised the viability of human pulmonary microvascular endothelial cells (HPMVECs) exposed to ascending concentrations of IRB. HPMVEC injury model and a mouse model of ALI induced by lipopolysaccharide (LPS) were pretreated by IRB. In vitro, cell viability was estimated by CCK-8 assay, and lactate dehydrogenase (LDH) release was tested by LDH assay kit. Enzyme-linked immunosorbent assay (ELISA) and Western blotting estimated the expression levels of inflammatory factors. Fluorescein isothiocyanate–dextran was used to assess HPMVEC permeability. Western blotting examined the expression of adherent and tight junction proteins. In vivo, hematoxylin and eosin staining evaluated lung tissue damage and lung wet/dry (W/D) weight was measured. ELISA analyzed the levels of inflammatory factors in the serum and bronchoalveolar lavage fluid (BALF), and Western blotting examined the expression of inflammatory factors. The total cell, neutrophil, and macrophage numbers in BALF were determined using a cell counter. Lung capillary permeability was assayed by Evans blue albumin and total protein concentration in BALF was measured using bicinchoninic acid method. Immunofluorescence assay and Western blotting examined the expression of adherent and tight junction proteins in lung tissues. It was observed that IRB dose-dependently enhanced the viability while reduced LDH release, inflammatory response as well as permeability in LPS-challenged HPMVECs in vitro. In addition, LPS-stimulated lung tissue damage, pulmonary edema, inflammatory response as well as lung capillary permeability in vivo were all reversed following IRB treatment. Collectively, IRB treatment might elicit protective behaviors against LPS-triggered ALI.

Publisher

Medknow

Subject

Physiology (medical),Physiology

Reference34 articles.

1. Mitochondria and their potential role in acute lung injury (review);Zhan;Exp Ther Med,2022

2. Past and present ARDS mortality rates: A systematic review;Máca;Respir Care,2017

3. Acute lung injury – From pathophysiology to treatment;Mokrá;Physiol Res,2020

4. Acute lung injury in patients with COVID-19 infection;Li;Clin Transl Med,2020

5. Biological therapies in the acute respiratory distress syndrome;Boyle;Expert Opin Biol Ther,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3