LncRNA VPS9D1-AS1 Regulates MiR-187-3p/Fibroblast Growth Factor Receptor-Like 1 Axis to Promote Proliferation, Migration, and Invasion of Prostate Cancer Cells

Author:

Wu Chenguang1,Chen Jian1,Wang Dong1

Affiliation:

1. Department of Urology Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, Fujian, China

Abstract

The morbidity and mortality of prostate cancer are increasing year by year, and the survival rate of prostate cancer patients after treatment is low. Therefore, investigating the molecular mechanism underlying prostate cancer is crucial for developing effective treatments. Recent studies have shown the important role of long-chain non-coding RNAs (lncRNAs) in tumorigenesis. VPS9D1-AS1 can modulate the progression of multiple cancers, but its molecular action mechanism in prostate cancer remains unknown. This study, therefore, intended to investigate the regulatory mechanism of VPS9D1-AS1 in prostate cancer. First, differentially expressed lncRNAs in prostate cancer were identified through bioinformatics approaches. The target lncRNA for the study was determined by reviewing the relevant literature and its downstream miRNA/mRNA axis was uncovered. Then, quantitative reverse transcription polymerase chain reaction was introduced to assess the expression of VPS9D1-AS1, miR-187-3p, and fibroblast growth factor receptor-like 1 (FGFRL1) at a cellular level, and Western blot was conducted to assess the protein level of FGFRL1 in cells. The results indicated that VPS9D1-AS1 and FGFRL1 were highly expressed in prostate cancer while miR-187-3p was less expressed. Besides, MTT, colony formation, wound healing, and cell invasion assays showed that silencing VPS9D1-AS1 inhibited the viability, migration ability, and invasion ability of prostate cancer cells. Dual-luciferase assay and RNA binding protein immunoprecipitation assay were performed to explore the interplay of miR-187-3p and VPS9D1-AS1 or FGFRL1. The results showed that VPS9D1-AS1 could sponge miR-187-3p, and FGFRL1 could serve as a direct target of miR-187-3p. Moreover, combined with the results of the rescue experiment, VPS9D1-AS1 was found to upregulate FGFRL1 by competitively sponging miR-187-3p to accelerate the malignant behaviors of prostate cancer cells. In conclusion, VPS9D1-AS1 could promote the phenotype progression of prostate cancer cells through targeting the miR-187-3p/FGFRL1 axis, and it has the potential to be a target for prostate cancer patients.

Publisher

Medknow

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3