Geometrical and Hemodynamic Characteristic Changes of Small Anterior Communicating Artery Aneurysms during Follow-ups in a Retrospective Analysis

Author:

Xu Lijian,Zhu Yueqi,Zhang Ruijian,Zhu Tingzhun,Wan Jieqing,Liang Fuyou,Zhao Bing

Abstract

Background: Small intracranial aneurysms have a low risk of rupture. However, ruptured anterior communicating artery (ACoA) aneurysms are usually smaller in clinical practice. The retrospective study aimed to investigate the geometrical and hemodynamic changes of small unruptured ACoA aneurysms during serial follow-ups. Materials and Methods: We retrospectively collected patients with small unruptured ACoA aneurysms that were not repaired, who had serial follow-ups from the Electronic Medical Record System in four tertiary hospitals. The geometrical parameters of ACoA aneurysms were measured using a three-dimensional reconstructed model. Intra-aneurysmal hemodynamic parameters were computed using a high-resolution computational fluid dynamics model. Geometrical and hemodynamic changes of the aneurysms were evaluated at each follow-up. Results: Five patients with small unruptured ACoA aneurysms that were not repaired were identified and included in this analysis. Aneurysms rupture occurred in two patients with aneurysm growth. The formation and enlargement of an irregular bleb at the aneurysm neck or dome were observed before the rupture. Ruptured aneurysms showed high wall shear stress (WSS) in the high inflow zone of aneurysm neck while low WSS and high oscillatory shear index (OSI) in the flow-recirculating region of aneurysm dome. Three unruptured aneurysms maintained a stable morphology and a physiological level of WSS. Conclusions: Aneurysm growth, low WSS, and high OSI at the dome and/or high WSS at the neck potentially contribute to the rupture of small ACoA aneurysms. These aneurysms should be considered for the treatment regardless of the small size.

Publisher

Medknow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3