Effects of novel additives on the mechanical and Biological properties of glass ionomer cement: An in vitro study

Author:

Piyush Gupta1,Kalyan S. Sai2,Aparna U. Palekar3,Khyati Gupta4,Basawaraj Biradar3

Affiliation:

1. Department of Conservative Dentistry and Endodontics, BhaBha Dental College, Bhopal, Madhya Pradesh, India

2. Director, Prevest Research Institute, Prevest Denpro Limited, Jammu, India

3. Department of Conservative Dentistry and Endodontics, Rural Dental College, PIMS loni, Wardha, Maharashtra, India

4. Department of Orthodontics and Dentofacial Orthopedics, Sharad Pawar Dental College, DMIHER, Wardha, Maharashtra, India

Abstract

Aim: To evaluate the efficacy of incorporated novel additives in Glass Ionomer Cement to ameliorate biocompatibility and mechanical properties. Introduction: Though Glass Ionomer Cement (GIC) has multiple advantages, it is not strong enough for medical applications, and its biocompatibility is questionable. To improve biocompatibility and its mechanical properties, a study was performed to investigate the potential benefits of adding graphene, carbon nanotubes, hydroxyapatite, and bioactive glass to GIC. The objective was to enhance both the mechanical properties and biocompatibility of GIC. Material and Method: Modified Glass Ionomer Cement was prepared by creating five groups. Hydroxyapatite, multi-walled carbon nanotubes, graphene, and bioactive glass were incorporated in a 10:1 weight ratio, respectively. Group 5 was designated as the control group and used Fuji Type II GIC. After preparing 90 samples, they were kept in deionized water for a day and then evaluated their compressive strength, microhardness, and diametral tensile strength, and also checked their in vitro cytotoxicity by direct contact with L929 mammalian fibroblast cells. Statistical Analysis: The data were examined using mean and standard deviation descriptive statistics. The comparative evaluation was done via Tukey HSD test and one-way ANOVA using S.P.S.S. software. Result: It showed that Group 3 had better results in compressive strength (144.478+- 3.989), diametral tensile strength (20.29+- 0.8601), and microhardness (131+-3.536) when compared with other groups while in the biocompatibility (viability %) Group 1 [82.55], Group 3 [76.49], Group 4 [87.63], while Group 2[58.02]. Conclusion: Group 3 has better physical properties in microhardness, diametral tensile strength, and compressive strength, than the other groups. In Biocompatibility, Group 1, Group 3, Group 4, and Group 5 were noncytotoxic at the same time multi-walled carbon nanotubes group (Group 2) had cytotoxic potential.

Publisher

Medknow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3