The use of cardiac magnetic resonance imaging for the evaluation of pulmonary hypertension

Author:

Mohamed Shaima saeed1,Ahmed Mona Mansour1,Ali Tamer Mohamed1,Elkorashy Reem Ibrahim2,Osman Ahmed Mohamed3,Abd Elkader Maryam Aly1,Kamel Sameh Nabil3

Affiliation:

1. Department of Chest Diseases, Faculty of Medicine, Ain Shams University, Cairo, Egypt

2. Department of Chest Diseases, Faculty of Medicine, Cairo University, Cairo, Egypt

3. Department of Radiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt

Abstract

Purpose Evaluate the utility of cardiac magnetic resonance imaging to estimate the principle hemodynamic parameters that are measured by right heart catheterization in a noninvasive manner i.e. mean pulmonary artery pressure, pulmonary vascular resistance and pulmonary artery wedge pressure through cardiac magnetic resonance based numerical models. Materials and methods 29 pulmonary hypertension patients, fitting the inclusion criteria were randomly selected and included in the study. CMR Imaging and right side heart catheter (RHC) were performed within one month. 3 Cardiac MRI based models in literature that showed high accuracy were tested. Two equations for mPAP calculation; mPAP=-231.423 + 53.8(loge inter-ventricular septal angle)+log10(right ventricular mass divided by left ventricular mass) i.e ventricular mass index X 8.708+area of pulmonary artery in diastole X 0.009 and mPAP = –4.6+(0.32*septal angle)+(ventricular mass index × 16.3). One equation for PAWP; PAWP = left atrial volume index +6.43 × 0.22. Results The Altman and Bland correlation between mPAP invasively measured and CMR-estimated mPAP had good correlation with r= 0.594 and r=0.599 (P<0.001) for CMR based mPAP model 1 and 2, respectively. The calculated mean bias between the RHC-derived and CMR-estimated mPAP was 7.9 (agreement interval -24.8 to 40.6 mm Hg) and mean bias -3 (agreement interval -34.8 to 28.2 mm Hg) for CMR based mPAP model 1 and 2, respectively. There was no correlation between invasively measured and CMR-estimated PAWP with (P =0.092) for CMR based PAWP model. The mean bias between the RHC-derived and CMR-estimated PAWP was 2.4 (agreement interval –13.5 to 18.2 mm Hg). The correlation between invasively calculated and CMR-estimated PVR had good correlation with r=0.703 and r=0.704 (P<0.001) for CMR based PVR model 1 and 2, respectively. The mean bias between the RHC-measured and CMR-estimated mPAP was 0.6 (agreement interval -11.6 to 12.8 mm Hg) and mean bias -1.3 (agreement interval -12.1 to 9.5 mm Hg) for CMR based mPAP model 1 and 2, respectively. Conclusion Our results showed good correlations between CMR findings and RHC as regard mPAP and PVR. Thus, estimation of mPAP, PAWP and PVR non-invasively using CMR is feasible but needs further studies to improve accuracy.

Publisher

Medknow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3