Affiliation:
1. Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
2. Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
Abstract
JOURNAL/nrgr/04.03/01300535-202504000-00032/figure1/v/2024-07-06T104127Z/r/image-tiff
Microglia, the primary immune cells within the brain, have gained recognition as a promising therapeutic target for managing neurodegenerative diseases within the central nervous system, including Parkinson’s disease. Nanoscale perfluorocarbon droplets have been reported to not only possess a high oxygen-carrying capacity, but also exhibit remarkable anti-inflammatory properties. However, the role of perfluoropentane in microglia-mediated central inflammatory reactions remains poorly understood. In this study, we developed perfluoropentane-based oxygen-loaded nanodroplets (PFP-OLNDs) and found that pretreatment with these droplets suppressed the lipopolysaccharide-induced activation of M1-type microglia in vitro and in vivo, and suppressed microglial activation in a mouse model of Parkinson’s disease. Microglial suppression led to a reduction in the inflammatory response, oxidative stress, and cell migration capacity in vitro. Consequently, the neurotoxic effects were mitigated, which alleviated neuronal degeneration. Additionally, ultrahigh-performance liquid chromatography–tandem mass spectrometry showed that the anti-inflammatory effects of PFP-OLNDs mainly resulted from the modulation of microglial metabolic reprogramming. We further showed that PFP-OLNDs regulated microglial metabolic reprogramming through the AKT-mTOR-HIF-1α pathway. Collectively, our findings suggest that the novel PFP-OLNDs constructed in this study alleviate microglia-mediated central inflammatory reactions through metabolic reprogramming.