Photobiomodulation: a novel approach to promote trans-differentiation of adipose-derived stem cells into neuronal-like cells

Author:

Da Silva Daniella1,van Rensburg Madeleen Jansen1,Crous Anine1ORCID,Abrahamse Heidi1

Affiliation:

1. Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Johannesburg, South Africa

Abstract

JOURNAL/nrgr/04.03/01300535-202502000-00035/figure1/v/2024-06-06T062529Z/r/image-tiff Photobiomodulation, originally used red and near-infrared lasers, can alter cellular metabolism. It has been demonstrated that the visible spectrum at 451–540 nm does not necessarily increase cell proliferation, near-infrared light promotes adipose stem cell proliferation and affects adipose stem cell migration, which is necessary for the cells homing to the site of injury. In this in vitro study, we explored the potential of adipose-derived stem cells to differentiate into neurons for future translational regenerative treatments in neurodegenerative disorders and brain injuries. We investigated the effects of various biological and chemical inducers on trans-differentiation and evaluated the impact of photobiomodulation using 825 nm near-infrared and 525 nm green laser light at 5 J/cm2. As adipose-derived stem cells can be used in autologous grafting and photobiomodulation has been shown to have biostimulatory effects. Our findings reveal that adipose-derived stem cells can indeed trans-differentiate into neuronal cells when exposed to inducers, with pre-induced cells exhibiting higher rates of proliferation and trans-differentiation compared with the control group. Interestingly, green laser light stimulation led to notable morphological changes indicative of enhanced trans-differentiation, while near-infrared photobiomodulation notably increased the expression of neuronal markers. Through biochemical analysis and enzyme-linked immunosorbent assays, we observed marked improvements in viability, proliferation, membrane permeability, and mitochondrial membrane potential, as well as increased protein levels of neuron-specific enolase and ciliary neurotrophic factor. Overall, our results demonstrate the efficacy of photobiomodulation in enhancing the trans-differentiation ability of adipose-derived stem cells, offering promising prospects for their use in regenerative medicine for neurodegenerative disorders and brain injuries.

Publisher

Medknow

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3