Near-lossless Compression of Tc-99 m DMSA Scan Images Using Discrete Cosine Transformation

Author:

Yadav Priya1,Pandey Anil Kumar1,Chaudhary Jagrati1,Sharma Param Dev2,Jaleel Jasim1,Baghel Vivek1,Patel Chetan1,Kumar Rakesh1

Affiliation:

1. Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India

2. Department of Computer Science, SGTB Khalsa College, University of Delhi, New Delhi, India

Abstract

Aim and Objective: The objective of this study was to optimize the threshold for discrete cosine transform (DCT) coefficients for near-lossless compression of Tc-99 m Dimercaptosuccinic acid (DMSA) scan images using discrete cosine transformation. Materials and Methods: Two nuclear medicine (NM) Physicians after reviewing several Tc-99 m DMSA scan images provided 242 Tc-99 m DMSA scan images that had scar. These Digital imaging and communication in medicine (DICOM) images were converted in the Portable Network Graphics (PNG) format. DCT was applied on these PNG images, which resulted in DCT coefficients corresponding to each pixel of the image. Four different thresholds equal to 5, 10, 15, and 20 were applied and then inverse discrete cosine transformation was applied to get the compressed Tc-99 m DMSA scan images. Compression factor was calculated as the ratio of the number of nonzero elements after thresholding DCT coefficients to the number of nonzero elements before thresholding DCT coefficients. Two NM physicians who had provided the input images visually compared the compressed images with its input image, and categorized the compressed images as either acceptable or unacceptable. The quality of compressed images was also assessed objectively using the following eight image quality metrics: perception-based image quality evaluator, structural similarity index measure (SSIM), multiSSIM, feature similarity indexing method, blur, global contrast factor, contrast per pixel, and brightness. Pairwise Wilcoxon signed-rank sum tests were applied to find the statistically significant difference between the value of image quality metrics of the compressed images obtained at different thresholds and the value of the image quality metrics of its input images at the level of significance = 0.05. Results: At threshold 5, (1) all compressed images (242 out of 242 Tc-99 m DMSA scan images) were acceptable to both the NM Physicians, (2) Compressed image looks identical to its original image and no loss of clinical details was noticed in compressed images, (3) Up to 96.65% compression (average compression: 82.92%) was observed, and (4) Result of objective assessment supported the visual assessment. The quality of compressed images at thresholds 10, 15, and 20 was significantly better than that of input images at P < 0.0001. However, the number of unacceptable compressed images at thresholds 10, 15, and 20 was 6, 38, and 70, respectively. Conclusions: Up to 96.65%, near-losses compression of Tc-99 m DMSA images was found using DCT by thresholding DCT coefficients at a threshold value equal to 5.

Publisher

Medknow

Subject

Radiology, Nuclear Medicine and imaging

Reference12 articles.

1. Optimum value of scale and threshold for compression of 99mTc-MDP bone scan images using Haar Wavelet transform;Pandey;Indian J Nucl Med,2022

2. High compression of nuclear medicine dynamic studies;Chameroy;Int J Card Imaging,1990

3. Lossy compression in nuclear medicine images;Rebelo;Proc Annu Symp Comput Appl Med Care,1993

4. How I came up with the discrete cosine transform;Ahmed;Digit Signal Process,1991

5. Compression of 99mTc methylene diphosphonate bone scan images using discrete cosine transformation;Pandey;Indian J Nucl Med,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3