Mesoporous silica and alumina nanoparticles to improve drug delivery of pioglitazone on diabetic type 1 nephropathy in rats

Author:

Varshosaz Jaleh12,Ahmadipour Saeedeh34,Dezhangfard Armin5

Affiliation:

1. Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

2. Novel Drug Delivery Systems Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

3. Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran

4. Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran

5. Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran

Abstract

Background and purpose: Diabetic nephropathy leads to end-stage renal disease. The present study aimed to evaluate the prophylactic effect of pioglitazone-loaded mesoporous silica and alumina scaffold on renal function and the underlying mechanisms in streptozotocin-induced diabetic rats. Experimental approach: The mesoporous nanoparticles were synthesized by chemical methods from tetraethylorthosilicate and aluminum isopropoxide and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The soaking method was applied to load pioglitazone into the mesoporous silica and alumina. Subsequently, the most capable formulation was evaluated for lipid profile, blood glucose, renal function biomarkers, malondialdehyde, and kidney histopathological changes in diabetic rats. Findings/Results: Pioglitazone loaded in the mesoporous included a superior release of about 80%. No interaction was observed in Fourier transform infrared spectroscopy and X-ray diffraction was shown crystalline. Scanning electron microscopy showed the size of the nanometer in the range of 100 - 300 nm. Mesoporous silica containing the drug significantly decreased urinary parameters, triglycerides, low-density lipoprotein, blood urea nitrogen, blood glucose, malondialdehyde, and creatinine. In addition, it showed increased high-density lipoprotein, significantly. The renal histopathological changes indicated improvement compared with the untreated diabetic group. Conclusion and implications: It was concluded that the mesoporous was potent to serve as a promising drug carrier and a platform aimed at the delivery of poorly water-soluble drugs for improving oral bioavailability. Furthermore, it has the potential to provide a beneficial effect on the changes in diabetic parameters.

Publisher

Medknow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3