Cytomegalovirus Seropositivity as a Potential Risk Factor for Increased Noise Trauma Susceptibility

Author:

Groschel Moritz,Voigt Stefan,Schwitzer Susanne,Ernst Arne,Basta Dietmar

Abstract

Context: Cytomegalovirus (CMV) represents the leading congenital viral infection in humans. Although congenital CMV due to vertically transmitted infections is the main cause of CMV-related diseases, adult CMV infections might still be of clinical significance. It is still discussed how far CMV seropositivity, due to horizontal infection in immunocompetent adults, is able to induce significant dysfunction. The present study investigates in how far CMV seropositivity is an additional risk factor for an increasing susceptibility to sensorineural hearing loss induced by acoustic injury during adulthood in a guinea pig CMV (GPCMV) model of noise-induced hearing loss (NIHL). Methods: Two groups (GPCMV seropositive vs. seronegative) of normal hearing adult guinea pigs were exposed to a broadband noise (5–20 kHz) for 2 hours at 115 dB sound pressure level. Frequency-specific auditory brainstem response recordings for determination of auditory threshold shift were carried out and the number of missing outer hair cells was counted 2 weeks after the noise exposure. Results: The data show a slightly increased shift in auditory thresholds in seropositive animals compared to the seronegative control group in response to noise trauma. However, the observed difference was significant at least at high frequencies. The differences in threshold shift are not correlated with outer hair cell loss between the experimental groups. Conclusion: The results point to potential additional pathologies in a guinea pig NIHL model in correlation to GPCMV seropositivity, which should be taken into account when assessing risks of latent/reactivated CMV infection. Due to the relatively slight effect in the present data, the aim of future studies should be a more detailed consideration (e.g., larger sample size) and to localize possible target structures as well as the significance of the infection route.

Publisher

Medknow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3