Contralateral Suppression of Transient-evoked Otoacoustic Emissions in Leisure Noise Exposed Individuals

Author:

Elangovan Thilagaswarna,Selvarajan Heramba Ganapathy,McPherson Bradley

Abstract

Background Leisure noise may have a significant impact on hearing thresholds and young adults are often exposed to loud music during leisure activities. This behavior puts them at risk of developing noise-induced hearing loss (NIHL). A frequent initial indication of NIHL is reduced hearing acuity at 4 kHz. The objective of the current study was to assess the role of the medial olivocochlear reflex (MOCR) in leisure noise-exposed individuals with and without a 4-kHz notch. Materials and Methods Audiological evaluation, including pure-tone and immittance audiometry, was performed for 156 college-going, young adults between May 2019 to December 2019. All participants had averaged pure-tone audiometric thresholds within normal limits, bilaterally. Annual individual exposure to personal listening devices (PLDs) was calculated using the Noise Exposure Questionnaire. The participants were then categorized into exposed (with and without audiometric 4 kHz notch) and nonexposed groups. Transient-evoked otoacoustic emission amplitude and its contralateral suppression were measured using linear and nonlinear click stimuli to study the effect of leisure noise exposure on MOCR. Results A significantly reduced overall contralateral suppression effect in participants exposed to PLD usage (P = 0.01) in both linear and nonlinear modes. On the contrary, significantly increased suppression was observed in linear mode for the 4 kHz frequency band in the PLD-exposed group without an audiometric notch (P = 0.009), possibly suggesting an early biomarker of NIHL. Conclusion Measuring contralateral suppression of otoacoustic emissions may be an effective tool to detect early NIHL in leisure noise-exposed individuals.

Publisher

Medknow

Reference28 articles.

1. Noise exposure and public health;Passchier-Vermeer;Environ Health Perspect,2000

2. Prevalence of noise-induced hearing loss in student musicians;Henrich;Int J Audiol,2010

3. Some observations on the nature of the audiometric 4000 Hz notch: data from 3430 veterans;Wilson;J Am Acad Audiol,2011

4. Audiometric notching at 4 kHz: good screening test for assessment of early onset of occupational hearing loss;Agarwal;Indian J Otol,2015

5. Audiometric notches in noise-induced hearing loss: 4K versus 6K as related to body mass index;Chang;J Int Adv Otol,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3