A comparative in vitro analysis of various temporization materials with respect to pulp chamber temperature changes during polymerization

Author:

Bharadwaj Sneha1,Choudhury Gopal Krishna2,Mohapatra Abhilash2,Panda Sangram2,Dhar Upasana3

Affiliation:

1. Department of Prosthodontics, Faculty in Clove Dental, New Delhi, India

2. Department of Prosthodontics, Institute of Dental Sciences, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, Odisha, India

3. Department of Community Dentistry, Institute of Dental Sciences, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, Odisha, India

Abstract

Aim: (1) To compare the temperature rise in the pulp chamber with different resin materials used for making provisional fixed partial dentures in anterior and posterior region while using Polyvinylsiloxane impression materials as matrix. (2) To identify a superior provisionalization material based on the amount of heat dissipated suitable for anterior and posterior provisional fixed partial denture fabrication. Settings and Design: Temporary crowns and bridges are integral to Fixed Prosthodontics. It has been observed that conventional fixed prosthesis temporisation materials release heat due to the exothermic polymerisation reaction. When such a provisional material is directly let to set on a vital tooth, the heat transfer causes irreversible changes in the pulp tissue depending of the degree of change. Hence, this study observes amount of heat generation in various materials during temporisation procedure, by simulating similar conditions. Materials and Methods: Two Models were fabricated, one simulating missing lateral incisor (Model A) and another simulating missing first molar (Model B). Intact maxillary central incisors and canine for Model A and intact mandibular Second Premolar and Second Molar were selected to act as abutments. These abutment teeth were fitted with the tip of a K-type Thermocouple inside their pulp chambers and these were connected to a digital thermometer. Five temporisation materials were chosen for fabrication of temporary crowns through Direct technique. (1) polymethy methacrylate (Self Cure acrylic), (2) bisacryl composite (Protemp 4), (3) visible light cure urethane dimethacrylate (Revotec LC), (4) barium glass and fumed silica infused methacrylate (Dentsply Integrity) and (5)nano-hybrid composite (VOCO Structur 3). Ten observations were made for each provisional material on each model. During each observation, temperature rise was recorded at 30s interval from the time of application, through the peak and till a decrease in temperature is observed. Polyvinyl siloxane was used as matrix for all except light cure resin, where polypropylene sheet was used. Statistical Analysis Used: Anova test used for statistical. Results: ANOVA test revealed that there was a significant difference in the temperature changes associated with the provisional restorative materials used. Among the five, polymethy methacrylate (self cure resin) showed the maximum rise in temperature, followed by bisacryl composite (Protemp 4), visible light cure urethane dimethacrylate (Revotec LC), barium glass and fumed silica infused methacrylate (Dentsply Integrity) and nano-hybrid composite (VOCO Structur 3). There was no comparable difference between Model A and B but an overall reduction of temperature rise was observed in model B. Conclusion: VOCO Structur 3 showed the least temperature rise in the pulp chamber, and overall temperature rise was less for model B which can be attributed to the residual dentin thickness.

Publisher

Medknow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3