Upregulation of circ0000381 attenuates microglial/macrophage pyroptosis after spinal cord injury

Author:

Zhang Yan1,Zhang Wenkai23,Liu Tao2,Ma Ziqian2,Zhang Wenxiu1,Guan Yun45,Chen Xueming12ORCID

Affiliation:

1. Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China

2. Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China

3. Department of Emergency Medicine, Aerospace Center Hospital, Beijing, China

4. Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA

5. Department of Neurological Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Abstract

Abstract JOURNAL/nrgr/04.03/01300535-202406000-00041/inline-graphic1/v/2023-10-30T152229Z/r/image-tiff Neuroinflammation exacerbates secondary damage after spinal cord injury, while microglia/macrophage pyroptosis is important to neuroinflammation. Circular RNAs (circRNAs) play a role in the central nervous system. However, the functional role and mechanism of circRNAs in regulating microglia/macrophage pyroptosis after spinal cord injury are still poorly studied. In the present study, we detected microglia/macrophage pyroptosis in a female rat model of spinal cord injury, along with upregulated levels of circ0000381 in the spinal cord. Our further experimental results suggest that circ0000381 may function as a sponge to sequester endogenous microRNA423-3p (miR-423-3p), which can increase the expression of NOD-like receptor 3 (NLRP3), a pyroptosis marker. Therefore, upregulation of circ0000381 may be a compensatory change after spinal cord injury to attenuate microglia/macrophage pyroptosis. Indeed, knockdown of circ0000381 expression exacerbated microglia/macrophage pyroptosis. Collectively, our findings provide novel evidence for the upregulation of circ0000381, which may serve as a neuroprotective mechanism to attenuate microglia/macrophage pyroptosis after spinal cord injury. Accordingly, circ0000381 may be a novel therapeutic target for the treatment of spinal cord injury.

Publisher

Medknow

Subject

Developmental Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3