Affiliation:
1. Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong Province, China
2. Shantou University Medical College, Shantou, Guangdong Province, China
3. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
4. Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202405000-00042/inline-graphic1/v/2023-09-28T063346Z/r/image-tiff
Intraocular pressure elevation can induce retinal ganglion cell death and is a clinically reversible risk factor for glaucoma, the leading cause of irreversible blindness. We previously demonstrated that casein kinase-2 inhibition can promote retinal ganglion cell survival and axonal regeneration in rats after optic nerve injury. To investigate the underlying mechanism, in the current study we increased the intraocular pressure of adult rats to 75 mmHg for 2 hours and then administered a casein kinase-2 inhibitor (4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole) by intravitreal injection. We found that intravitreal injection of 4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole promoted retinal ganglion cell survival and reduced the number of infiltrating macrophages. Transcriptomic analysis showed that the mitogen activated protein kinase signaling pathway was involved in the response to intraocular pressure elevation but was not modulated by the casein kinase-2 inhibitors. Furthermore, casein kinase-2 inhibition downregulated the expression of genes (Cck, Htrsa, Nef1, Htrlb, Prph, Chat, Slc18a3, Slc5a7, Scn1b, Crybb2, Tsga10ip, and Vstm21) involved in intraocular pressure elevation. Our data indicate that inhibition of casein kinase-2 can enhance retinal ganglion cell survival in rats after acute intraocular pressure elevation via macrophage inactivation.
Subject
Developmental Neuroscience