Adenosine A2A receptor blockade attenuates excitotoxicity in rat striatal medium spiny neurons during an ischemic-like insult

Author:

Coppi Elisabetta1ORCID,Cherchi Federica1,Gibb Alasdair J.2

Affiliation:

1. Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy

2. Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK

Abstract

Abstract During brain ischemia, excitotoxicity and peri-infarct depolarization injuries occur and cause cerebral tissue damage. Indeed, anoxic depolarization, consisting of massive neuronal depolarization due to the loss of membrane ion gradients, occurs in vivo or in vitro during an energy failure. The neuromodulator adenosine is released in huge amounts during cerebral ischemia and exerts its effects by activating specific metabotropic receptors, namely: A1, A2A, A2B, and A3. The A2A receptor subtype is highly expressed in striatal medium spiny neurons, which are particularly susceptible to ischemic damage. Evidence indicates that the A2A receptors are upregulated in the rat striatum after stroke and the selective antagonist SCH58261 protects from exaggerated glutamate release within the first 4 hours from the insult and alleviates neurological impairment and histological injury in the following 24 hours. We recently added new knowledge to the mechanisms by which the adenosine A2A receptor subtype participates in ischemia-induced neuronal death by performing patch-clamp recordings from medium spiny neurons in rat striatal brain slices exposed to oxygen and glucose deprivation. We demonstrated that the selective block of A2A receptors by SCH58261 significantly reduced ionic imbalance and delayed the anoxic depolarization in medium spiny neurons during oxygen and glucose deprivation and that the mechanism involves voltage-gated K+ channel modulation and a presynaptic inhibition of glutamate release by the A2A receptor antagonist. The present review summarizes the latest findings in the literature about the possibility of developing selective ligands of A2A receptors as advantageous therapeutic tools that may contribute to counteracting neurodegeneration after brain ischemia.

Publisher

Medknow

Subject

Developmental Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3