Long non-coding RNA H19 regulates neurogenesis of induced neural stem cells in a mouse model of closed head injury

Author:

Gao Mou123ORCID,Dong Qin4,Yang Zhijun3,Zou Dan1,Han Yajuan3,Chen Zhanfeng3ORCID,Xu Ruxiang1ORCID

Affiliation:

1. Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China

2. Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China

3. Zhongsai Stem Cell Genetic Engineering Co., Ltd., Sanmenxia, Henan Province, China

4. Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing, China

Abstract

JOURNAL/nrgr/04.03/01300535-202404000-00032/inline-graphic1/v/2023-09-09T133047Z/r/image-tiff Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury. We previously reported that induced neural stem cells exert beneficial effects on neural regeneration via cell replacement. However, the neural regeneration efficiency of induced neural stem cells remains limited. In this study, we explored differentially expressed genes and long non-coding RNAs to clarify the mechanism underlying the neurogenesis of induced neural stem cells. We found that H19 was the most downregulated neurogenesis-associated lncRNA in induced neural stem cells compared with induced pluripotent stem cells. Additionally, we demonstrated that H19 levels in induced neural stem cells were markedly lower than those in induced pluripotent stem cells and were substantially higher than those in induced neural stem cell-derived neurons. We predicted the target genes of H19 and discovered that H19 directly interacts with miR-325-3p, which directly interacts with Ctbp2 in induced pluripotent stem cells and induced neural stem cells. Silencing H19 or Ctbp2 impaired induced neural stem cell proliferation, and miR-325-3p suppression restored the effect of H19 inhibition but not the effect of Ctbp2 inhibition. Furthermore, H19 silencing substantially promoted the neural differentiation of induced neural stem cells and did not induce apoptosis of induced neural stem cells. Notably, silencing H19 in induced neural stem cell grafts markedly accelerated the neurological recovery of closed head injury mice. Our results reveal that H19 regulates the neurogenesis of induced neural stem cells. H19 inhibition may promote the neural differentiation of induced neural stem cells, which is closely associated with neurological recovery following closed head injury.

Publisher

Medknow

Subject

Developmental Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3