Sustained release of vascular endothelial growth factor A and basic fibroblast growth factor from nanofiber membranes reduces oxygen/glucose deprivation-induced injury to neurovascular units

Author:

Wu Yifang1,Sun Jun1,Lin Qi2,Wang Dapeng1ORCID,Hai Jian1ORCID

Affiliation:

1. Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China

2. Department of Pharmacy, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Abstract

JOURNAL/nrgr/04.03/01300535-202404000-00034/inline-graphic1/v/2023-09-09T133047Z/r/image-tiff Upregulation of vascular endothelial growth factor A/basic fibroblast growth factor (VEGFA/bFGF) expression in the penumbra of cerebral ischemia can increase vascular volume, reduce lesion volume, and enhance neural cell proliferation and differentiation, thereby exerting neuroprotective effects. However, the beneficial effects of endogenous VEGFA/bFGF are limited as their expression is only transiently increased. In this study, we generated multilayered nanofiber membranes loaded with VEGFA/bFGF using layer-by-layer self-assembly and electrospinning techniques. We found that a membrane containing 10 layers had an ideal ultrastructure and could efficiently and stably release growth factors for more than 1 month. This 10-layered nanofiber membrane promoted brain microvascular endothelial cell tube formation and proliferation, inhibited neuronal apoptosis, upregulated the expression of tight junction proteins, and improved the viability of various cellular components of neurovascular units under conditions of oxygen/glucose deprivation. Furthermore, this nanofiber membrane decreased the expression of Janus kinase-2/signal transducer and activator of transcription-3 (JAK2/STAT3), Bax/Bcl-2, and cleaved caspase-3. Therefore, this nanofiber membrane exhibits a neuroprotective effect on oxygen/glucose-deprived neurovascular units by inhibiting the JAK2/STAT3 pathway.

Publisher

Medknow

Subject

Developmental Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3