Cytotoxic Effects of a Novel tagged Apoptin on Breast Cancer Cell Lines

Author:

Lakhshei Parisa12,Ahangarzadeh Shahrzad3,Yarian Fatemeh4,Koochaki Ameneh5,Kazemi Bahram1,Kiamehr Zahra2,Mohammadi Elmira67,Alibakhshi Abbas8

Affiliation:

1. Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2. Department of Biochemistry, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran

3. Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

4. Department of Medical Biotechnology, school of advanced technologies in medicine, Fasa University of Medical Sciences, Fasa, Iran

5. Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

6. Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan, Iran

7. Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran

8. Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran

Abstract

Backgrounds: Apoptin can induce tumor cell-specific apoptosis in a broad range of human tumor cells and is a potential anticancer therapeutic candidate to kill tumor cells. Materials and Methods: We designed two structures of apoptin fusion protein, SUMO-PTD4-Apoptin, and PTD4-Apoptin. To express these fusion proteins, E. coli BL21(DE3) was employed. MTT assay, Flow cytometry, and cell cycle analysis were used to investigate the function of proteins on two breast cancer cell lines (MDA-MB-231 and MCF-7) and MCF 10A cell line (as normal cells). Results: Expression of the recombinant SUMO-PTD4-Apoptin and PTD4-Apoptin in E. coli BL21(DE3) was successful. MTT assay results showed that the IC50 was 6.4 µg/ml for SUMO-PTD4-Apoptin in MDA-MB-231 and was 9.3 after 24 h of treatment in MCF-7. The specific cytotoxicity in both cell lines is significant in comparison with MCF-10A, which is used as a normal cell line (IC50 = 29.4). The IC50 for PTD4-Apoptin was 11.07 µg/ml after 24 h of treatment in MDA-MB-231, while the IC50 of PTD4-Apoptin for MCF7 cells was not significantly different from normal cells. The flow cytometry analysis displayed a significant increment in the apoptosis and late apoptosis number in the MDA-MB-231 cells after treatment with SUMO-PTD4-Apoptin and PTD4-Apoptin protein. PTD4-Apoptin and SUMO-PTD4-Apoptin treatment of MDA-MB-231 cells caused a noteworthy increase in the G0-G1 phase and a reduction in the cell population of S and M/G2. Conclusion: This study demonstrates that the fusion of PTD4-Apoptin to SUMO-PTD4-Apoptin could provide an effective method to help enhance the expression and solubility of heterologous Apoptin in E. coli. BL21 (DE3).

Publisher

Medknow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3