Microarray Images Contrast Enhancement and Gridding Using Genetic Algorithm

Author:

Bakhshayesh Nayyer Mostaghim1,Shamsi Mousa1,Golabi Faegheh2

Affiliation:

1. Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran

2. Department of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract

Background: Microarray is a sophisticated tool that concurrently analyzes the expression levels of thousands of genes, giving scientists an overview of DNA and RNA study. This procedure is divided into three stages: contact with biological samples, data extraction, and data analysis. Because expression levels are disclosed by the interplay of light with fluorescent markers, the data extraction stage relies on image processing methods. To extract quantitative information from the microarray image (MAI), four steps of preprocessing, gridding, segmentation, and intensity quantification are required. During the generation of MAIs, a large number of error-prone processes occur, leading to structural problems and reduced quality in the resulting data, affecting the identification of expressed genes. Methods: In this article, the first stage has been examined. In the preprocessing stage, the contrast of the images is first enhanced using the genetic algorithm, then the source noises that appear as small artifacts are removed using morphology, and finally, to confirm the effect of the contrast enhancement (CE) on the main stages of microarray data processing, gridding is checked on complementary deoxyribonucleic acid MAIs. Results: The comparison of the obtained results with an adaptive histogram equalization (AHE) and multi-decomposition histogram equalization (M-DHE) methods shows the superiority and efficiency of the proposed method. For example, the image contrast of the Genomic Medicine Research Center Laboratory dataset is 3.24, which is 42.91 with the proposed method and 13.48 and 32.40 with the AHE and M-DHE methods, respectively. Conclusions: The performance of the proposed methods for CE is evaluated on 3 databases and a general conclusion is obtained as to which CE method is more suitable for each dataset.

Publisher

Medknow

Reference23 articles.

1. Algorithms to preprocess microarray image data;Zaffino;Methods Mol Biol,2022

2. Alignment of microarray data;Cauteruccio;Methods Mol Biol,2022

3. Overview of DNA microarrays: Types, applications, and their future;Bumgarner;Curr Protoc Mol Biol,2013

4. Microarray Image Analysis: From Image Processing Methods to Gene Expression Levels Estimation;Belean;Digital Object Identifier,2020

5. Hybrid quantum salp swarm algorithm for contrast enhancement of natural images;Sayed;Int Eng Syst,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3