Biomarker Discovery by Imperialist Competitive Algorithm in Mass Spectrometry Data for Ovarian Cancer Prediction

Author:

Pirhadi Shiva,Maghooli Keivan,Moteghaed Niloofar Yousefi,Garshasbi Masoud,Mousavirad Seyed Jalaleddin

Abstract

Background: Mass spectrometry is a method for identifying proteins and could be used for distinguishing between proteins in healthy and nonhealthy samples. This study was conducted using mass spectrometry data of ovarian cancer with high resolution. Usually, diagnostic and monitoring tests are done according to sensitivity and specificity rates; thus, the aim of this study is to compare mass spectrometry of healthy and cancerous samples in order to find a set of biomarkers or indicators with a reasonable sensitivity and specificity rates. Methods: Therefore, combination methods were used for choosing the optimum feature set as t-test, entropy, Bhattacharya, and an imperialist competitive algorithm with K-nearest neighbors classifier. The resulting feature from each method was feed to the C5 decision tree with 10-fold cross-validation to classify data. Results: The most important variables using this method were identified and a set of rules were extracted. Similar to most frequent features, repetitive patterns were not obtained; the generalized rule induction method was used to identify the repetitive patterns. Conclusion: Finally, the resulting features were introduced as biomarkers and compared with other studies. It was found that the resulting features were very similar to other studies. In the case of the classifier, higher sensitivity and specificity rates with a lower number of features were achieved when compared with other studies.

Publisher

Medknow

Reference29 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sensor detection in gynaecological medicine;Sensors & Diagnostics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3