Quantitative Evaluation of Scatter Correction in 128-slice Fan-Beam Computed Tomography Scan using Geant4 Application for Tomographic Emission Monte Carlo Simulation

Author:

Azinkhah Iman1,Sadeghi Mahdi1,Sheikhzadeh Peyman2,Malekzadeh Malakeh3

Affiliation:

1. Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

2. Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran

3. Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

Abstract

Background: Simulation of tomographic imaging systems with fan-beam geometry, estimation of scattered beam profile using Monte Carlo techniques, and scatter correction using estimated data have always been new challenges in the field of medical imaging. The most important aspect is to ensure the results of the simulation and the accuracy of the scatter correction. This study aims to simulate 128-slice computed tomography (CT) scan using the Geant4 Application for Tomographic Emission (GATE) program, to assess the validity of this simulation and estimate the scatter profile. Finally, a quantitative comparison of the results is made from scatter correction. Methods: In this study, 128-slice CT scan devices with fan-beam geometry along with two phantoms were simulated by GATE program. Two validation methods were performed to validate the simulation results. The data obtained from scatter estimation of the simulation was used in a projection-based scatter correction technique, and the post-correction results were analyzed using four quantities, such as: pixel intensity, CT number inaccuracy, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR). Results: Both validation methods have confirmed the appropriate accuracy of the simulation. In the quantitative analysis of the results before and after the scatter correction, it should be said that the pixel intensity patterns were close to each other, and the accuracy of the CT scan number reached <10%. Moreover, CNR and SNR have increased by more than 30%–65% respectively in all studied areas. Conclusion: The comparison of the results before and after scatter correction shows an improvement in CNR and SNR while a reduction in cupping artifact according to pixel intensity pattern and enhanced CT number accuracy.

Publisher

Medknow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3