Constructing Multiwavelet-based Shearlets and using Them for Automatic Segmentation of Noisy Brain Images Affected by COVID-19

Author:

Aghazadeh Nasser,Moradi Paria,Noras Parisa

Abstract

Backgorund: Nowadays, everybody's life is dominated by COVID-19, which might have been the source of severe acute respiratory syndrome coronavirus 2. This virus disrupts the lungs first of all. Recently, it has been found that coronavirus may affect the brain. Because all body actions rely on the brain, hence investigating its healthy is an essential item in coronavirus effects. Method: Brain image segmentation can be helpful in the detection of the regions damaged by the effects of coronavirus. Since every image given by photography devices may have noises, therefore, first of all, the brain magnetic resonance angiography (MRA) images must be denoised for best investigation. In the present paper, we have presented the construction of multishearlets based on multiwavelets for the first time and have used them for the purpose of denoising. Multiwavelets have some advantages to wavelets. Therefore, we have used them in the shearlet system to expand the properties of multiwavelets in all directions. After denoising, we have proposed a scheme for the automatic characterization of the initial curve in the active contour model for segmentation. Detecting the initial curve is a challenging task in active contour-based segmentation because detecting an initial curve far from the desired region can lead to unfavorable results. Results: The results show the performance of using multishearlets in detecting affected regions by COVID-19. Using multishearlets has led to the high value of peak signal-to-noise ratio and Structural similarity index measure in comparison with original shearlets. Original shearlets are constructed from wavelets whereas we have constructed multishearlets from multiwavelets. Conclusion: The results show that multishearlets can neutralize the effect of noise in MRA images in a good way rather than shearlets. Moreover, the proposed scheme for segmentation can lead to 0.99 accuracy.

Publisher

Medknow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3