Classification of Human Emotional States Based on Valence-Arousal Scale using Electroencephalogram

Author:

Kumar GS Shashi,Sampathila Niranjana,Martis Roshan Joy

Abstract

Recognition of human emotion states for affective computing based on Electroencephalogram (EEG) signal is an active yet challenging domain of research. In this study we propose an emotion recognition framework based on 2-dimensional valence-arousal model to classify High Arousal-Positive Valence (Happy) and Low Arousal-Negative Valence (Sad) emotions. In total 34 features from time, frequency, statistical and nonlinear domain are studied for their efficacy using Artificial Neural Network (ANN). The EEG signals from various electrodes in different scalp regions viz., frontal, parietal, temporal, occipital are studied for performance. It is found that ANN trained using features extracted from the frontal region has outperformed that of all other regions with an accuracy of 93.25%. The results indicate that the use of smaller set of electrodes for emotion recognition that can simplify the acquisition and processing of EEG data. The developed system can aid immensely to the physicians in their clinical practice involving emotional states, continuous monitoring, and development of wearable sensors for emotion recognition.

Publisher

Medknow

Reference36 articles.

1. What are emotions. And how can they be measured?;Scherer;Soc Sci Inf,2005

2. The empirical status of the laws of emotion;Frijda;Cogn Emot,1992

3. Affective computing: Challenges;Picard;Int J Hum Comput Int,2003

4. EEG-based emotion recognition. The influence of visual and auditory stimuli;Bos;Academia-CiteSeerx,2006

5. An affective circumplex model of neural systems subserving valence, arousal, and cognitive overlay during the appraisal of emotional faces;Gerber;Neuropsychologia,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3