Collapsed Cone Superposition Algorithm Validation for Chest Wall Tangential Fields using Virtual Wedge Filters

Author:

Zeinali Ahad,Molazadeh Mikaeil,Ganjgahi Samaneh,Saberi Hassan

Abstract

Background: Virtual wedge (VW) is used in radiotherapy to compensate for missing tissues and create a uniform dose distribution in tissues. According to TECDOC-1583 and technical reports series no. 430, evaluating the dose calculation accuracy is essential for the quality assurance of treatment planning systems (TPSs). In this study, the dose calculation accuracy of the collapsed cone superposition (CCS) algorithm in the postmastectomy radiotherapy of the chest wall for breast cancer was evaluated by comparing the calculated and measured dose in VW fields. Methods: Two tangential fields with the typical VW angles were planned using ISOgray TPS in a thorax phantom. The CCS algorithm was used for dose calculation at 6 and 15 MV photon beams. The obtained dose distributions from EBT3 film spaces and TPS were evaluated using the gamma index. Results: The measured and calculated dose values using VW in a heterogeneous medium with different beam energies were in a good agreement with each other (acceptance rate: 88.0%–93.4%). The calculated and measured data did not differ significantly with an increase/decrease in wedge angle. In addition, the results demonstrated that ISOgray overestimated and underestimated the dose of the soft tissue and lung in the planned volume, respectively. Conclusions: According to the results of gamma index analysis, the calculated dose distribution using VW model with the CCS algorithm in a heterogeneous environment was within acceptable limits.

Publisher

Medknow

Reference31 articles.

1. Recent developments in radiotherapy;Citrin;N Engl J Med,2017

2. Current controversies in radiotherapy for breast cancer;Krug;Radiat Oncol,2017

3. Monte Carlo systems used for treatment planning and dose verification;Brualla;Strahlenther Onkol,2017

4. Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy;Martinez-Rovira;Med Phys,2012

5. Evaluation of dose calculation algorithms accuracy for eclipse, PCRT3D, and monaco treatment planning systems using IAEA TPS commissioning tests in a heterogeneous phantom;Kavousi;Iran J Med Phys,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3