The Clinicopathological Features of the Solitary Subependymal Giant Cell Astrocytoma: A Systematic Review

Author:

Piña-Ballantyne Steven Andrés1,Espinosa-Aguilar Eunice Jazmín2,Calderón-Garcidueñas Ana Laura1

Affiliation:

1. Department of Neuropathology, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, MEX

2. Department of Internal Medicine, Clínica-Hospital Mérida, Yucatán, MEX

Abstract

Subependymal giant cell astrocytoma (SEGA), a circumscribed grade I glioma, is typically associated with tuberous sclerosis complex (TSC). However, “solitary SEGA” has been described. We performed a systematic review of available case reports and case series of solitary SEGA. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was used with the following MeSH terms: “Subependymal giant cell astrocytoma,” “Sporadic,” “Absence,” “Non-associated,” “Solitary,” and “Tuberous Sclerosis.” Data sources included PubMed, Google Scholar, Web of Science, and Cochrane from 1979 to June 29, 2023. Of the 546 studies, 20 met the inclusion criteria. Fifty-nine cases were analyzed. The mean age was 19 years (range 4–75), with 29 women (49.1%). Tumor ranged in size from 0.8 to 5.8 cm. Headache was the most frequent initial symptom (75.6%). The lateral ventricles near the foramen of Monro were the most common location (66.10%). Tumors expressed neuroglial (n = 19) or only glial (n = 20) markers. In nine of 59 cases, genetic studies ruled out germinal TSC1/2 mutations; in 13 cases (22.03%), somatic mutations in those genes were identified. “Solitary SEGAs” included tumors with neuroglial profile and classic morphological pattern, and tumors with only glial markers. It is necessary to confirm in SEGA-like tumors, the dual nature with at least glial fibrillary acidic protein (GFAP), neurofilaments, and synaptophysin antibodies. Screening for TSC1/2 mutations, and probably of the NF type 1 gene, is recommended for both germline and somatic mutations. Long-term clinical follow-up is necessary to analyze biological behavior and compare it with genetic and molecular profiles.

Publisher

Medknow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3