A Radiomics Model for the Differentiation of Intracranial Solitary Fibrous Tumor/Hemangiopericytoma and Meningioma Based on Multiparametric Magnetic Resonance Imaging

Author:

Xiong Hua1,Yin Ping2,Luo Weiqiang3,Li Yihui3,Wang Sicong4

Affiliation:

1. Department of Radiology, Chongqing General Hospital, University of Chinese Academy of Sciences, 104 Pibashan Zhen Street, Yuzhong District, Chongqing, P. R. China

2. Department of Radiology, Peking University People’s Hospital, 11 Xizhimen Nandajie, Xicheng District, Beijing, P. R. China

3. Department of Radiology, Zhuzhou Central Hospital, Hunan, P. R. China

4. GE Healthcare, Shanghai, China Shanghai, P. R. China

Abstract

Background: Although the imaging findings of intracranial solitary fibrous tumor (SFT)/hemangiopericytoma (HPC) and meningioma are similar, their treatment and prognosis are quite different. Accurate preoperative identification of these two types of tumors is crucial for individualized treatment. Objective: The aim of this study was to develop a radiomics model for the differentiation of intracranial SFT/HPC and meningioma based on multiparametric magnetic resonance imaging (mpMRI). Material and Methods: A total of 99 patients from July 2012 to July 2018 with histologically and immunohistochemically confirmed SFT/HPC (n = 40) or meningiomas (n = 59) were retrospectively analyzed. A total of 1118 features were extracted based on its image shape, intensity and texture features. The logistic regression (LR) and multi-layer artificial neural network (ANN) classifiers were used to classify SFT/HPC and meningioma. The predictive performance was calculated using receiver operating characteristic curves (ROC). Results: We found significant difference in terms of sex between the SFT/HPC and meningioma group (χ 2 = 4.829, P < 0.05), but no significant difference was found in age (P > 0.05). The most significant radiomics features included five shape and four first-order level features. For the LR classifier, the prediction accuracy of SFT/HPC was 71.0% and meningioma was 78.7%. For the ANN classifier, the prediction accuracy of SFT/HPC was 83.9% and meningioma was 80.9%. Both of the two classifiers achieved a high accuracy rate, but ANN was better. Conclusions: Radiomics features, especially when combined with an ANN classifier, can provide satisfactory performance in distinguishing SFT/HPC and meningioma.

Publisher

Medknow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3