A Systemic Review and Meta-analysis on Natural Resistance-associated Macrophage Protein 1 (3’-Untranslated Region) and Nucleotide-binding Oligomerization Domain-2 (rs8057341) Polymorphisms and Leprosy Susceptibility in Asian and Caucasian Populations

Author:

Antony Bibin Savio1,Nagarajan Chitra2,Devaraj Danis Vijay3,Subbaraj Gowtham Kumar1ORCID

Affiliation:

1. Department of Medical Genetics, Faculty of Allied Health Science, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India

2. Department of Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, Tamil Nadu, India

3. Department of Microbiology, Karpaga Vinayaga Institute of Medical Sciences and Research Centre, Chengalpattu, Tamil Nadu, India

Abstract

The current meta-analysis aims to explore the potential correlation between natural resistance-associated macrophage protein 1 (NRAMP1) (3’-Untranslated region [3’-UTR]) and nucleotide-binding oligomerization domain-2 (NOD2 [rs8057341]) gene polymorphisms and their association with leprosy susceptibility in both Asian and Caucasian populations. Datas were retrieved from case control studies with NOD 2 and NRAMP 1 gene polymorphism associated with leprosy disease. Leprosy emerges as a particularly distinctive ailment among women on a global scale. The NRAMP1 (3’-UTR) and NOD2 (rs8057341) genetic variations play a crucial role in the progression of leprosy. A systematic review of relevant case–control studies was conducted across several databases, including ScienceDirect, PubMed, Google Scholar, and Embase. Utilizing MetaGenyo and Review Manager 5.4 Version, statistical analyses were carried out. Nine case–control studies totaling 3281 controls and 3062 leprosy patients are included in the research, with the objective of examining the potential association between NRAMP1 (3’-UTR) and NOD2 (rs8057341) gene polymorphisms and leprosy risk. The review methodology was registered in PROSPERO (ID520883). The findings reveal a robust association between NRAMP1 (3’-UTR) and NOD2 (rs8057341) gene polymorphisms and leprosy risk across various genetic models. Although the funnel plot analysis did not identify publication bias, bolstering these findings and elucidating potential gene–gene and gene–environment interactions require further comprehensive epidemiological research. This study identified a strong correlation between polymorphisms in the NOD2 (rs8057341) genes and susceptibility to leprosy across two genetic models. Further comprehensive epidemiological investigations are warranted to validate these findings and explore potential interactions between these genes and environmental factors.

Publisher

Medknow

Reference41 articles.

1. Leprosy – An overview of clinical features, diagnosis, and treatment;Fischer;J Dtsch Dermatol Ges,2017

2. Treatment and evaluation advances in leprosy neuropathy;Ebenezer;Neurotherapeutics,2021

3. Endemicity and increasing incidence of leprosy in Kenya and other world epidemiologic regions: A review;Nyamogoba;Afr J Health Sci,2019

4. The review of histoplasmosis endemicity and current status in Asia;Rozaliyani;Histoplasma and Histoplasmosis: IntechOpen,2020

5. Susceptibility and resistance in leprosy: Studies in the mouse model;Adams;Immunol Rev,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3