Transcriptomic and Proteomic Analyses of Mycobacterium tuberculosis Strains Isolated from Tuberculous Meningitis Patients

Author:

Krishnakumariamma Krishnapriya1,Ellappan Kalaiarasan1,Kadhiravan Tamilarasu2,Alex Anoop34,Kumar Saka Vinod5,Muthaiah Muthuraj6,Joseph Noyal Mariya1ORCID

Affiliation:

1. Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India

2. Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India

3. CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal

4. Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal

5. Department of Pulmonary Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India

6. Department of Microbiology, Intermediate Reference Laboratory, Government Hospital for Chest Diseases, Puducherry, India

Abstract

Abstract Background: Tuberculous meningitis (TBM) is caused by the dissemination of Mycobacterium tuberculosis (MTB) from the primary site of infection to the central nervous system. However, the bacterial factors associated with the pathogenesis of TBM remain unclear. This study employed transcriptomic and proteomic methods to comprehensively analyze the changes in genes and proteins and their associated pathways in MTB strains isolated from cerebrospinal fluid (CSF) of TBM and sputum of pulmonary TB (PTB) cases. Methodology: Five MTB strains were subjected to OMICs (transcriptomic and proteomic) analysis. Among five MTB strains, two were isolated from CSF and sputum samples of the same patient with PTB and TBM infections, one from the sputum of a different PTB patient, and a strain obtained from the CSF of another TBM patient. H37Rv was used as a reference strain. The reliability of transcriptomic results was validated by real time polymerase chain reaction with selected genes from 100 MTB isolates (CSF, 50 and sputum, 50). Results: The transcriptomic study revealed that overlapping differentially expressed genes of MTB strains isolated from TBM patients showed featured enrichment in benzoate degradation, lysine degradation, tryptophan metabolism, fatty acid degradation, ATP binding cassette transporters, microbial metabolism in diverse environments, biosynthesis of antibiotics, and metabolic pathways. Eleven genes were upregulated, and four were downregulated in MTB strains isolated from TBM compared to PTB. From proteomic analysis, we identified three candidate proteins belonging to plasminogen binding proteins (PBP) (enolase, dnaK, and isocitrate lyase 1) that were significantly upregulated in MTB strains isolated from TBM. Conclusion: Overall, the transcriptomic and proteomic analyses provided an important base for understanding the unique feature of TBM pathogenesis. To the best of our knowledge, this is the first report highlighting the importance of PBPs on TBM pathogenesis.

Publisher

Medknow

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3