Analysis and simulation of heat transfer in human tooth during the curing of orthodontic appliance and food ingestion

Author:

Velázquez-López J.1,Cruz-Gómez M. A.2,Ruelas-Oronia M. A.1,Dipp-Velázquez F.1,Dib-Kanan A.1,Méndez-Mancilla Z.1

Affiliation:

1. Autonomous University of Puebla, Faculty of Stomatology, Stomatology Master of Science in Orthodontics, Graduate Building, Orthodontics Clinic, Puebla, México,

2. Faculty of Engineering, I.M.E. School, Tribology and Transport Group, Graduate Building, First Floor, Cubicle Num. 16, Valsequillo Blvd., San Claudio Ave., University City, San Manuel Colony, Puebla, México

Abstract

The aim of this study was to analyze and simulate the heat transfer in the human tooth undergoing fixed orthodontic appliances and food intake. An in vivo representative mathematic model of a layered thermographic profile was developed during the LED curing of Gemini bracket 0.022 in slot (conventional ligating system) and Transbond XT adhesive. The characterization of the layered thermic response allowed to identify if during the LED curing process, according to manufacturer’s specification (light curing unit, adhesive) can induce pulpar necrosis. The profile’s thermographic model was the simulation basis of many conditions such as food intake, due to in vivo metrology is affected by the impossibility of a correct apparatus position and the physiologic function of the oral cavity which is exposed to uncontrollable temperature changes. The metrology was carried out with a T-440 thermographic camera during LED curing bracket, using a LED curing light (Elipar S10) placed at 3 ± 1 mm for 5 s at each mesial and distal surface. The thermography outcomes were analyzed in the FLIR Tools Software, Microsoft Excel 2013 and SPSS 22. To adjust the mathematic model error, in vitro studies were performed on third molars for the purpose of realizing extreme exposition temperature condition tests caused by the LED curing unit without jeopardizing the human tooth vitality as would it be on in vivo experimentation. The bracket curing results according to manufacturer’s conditions reached 39°C in vivo temperatures and 47°C on in vitro tests, which does not jeopardize human tooth vitality as said by previous researches, although, an LED curing precise protocol established by the manufacturer’s LED curing light is sustained.

Publisher

Scientific Scholar

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3